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Problem	Background
• Supervised learning (SVM, deep learning, etc)
– Offer excellent classification performance in several areas
– Require large volumes of training data

• Unsupervised learning (clustering, EM, etc)
– Data exploration, offer insights into the data
– Do not require labelled examples
– Results may not be relevant to the user’s requirements
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• Supervised learning (SVM, deep learning, etc)
– Offer excellent classification performance in several areas
– Require large volumes of training data

• Unsupervised learning (clustering, EM, etc)
– Data exploration, offer insights into the data
– Do not require labelled examples
– Results may not be relevant to the user’s requirements

• Semi-supervised learning (constrained clustering)
– Fits between the two, large amount of unlabelled data
with some information for a (generally) small subset

Problem	Background
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Types	of	Constraints:	Cluster-Level

• Number of clusters
– User: number of distinct objects
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Types	of	Constraints:	Cluster-Level

• Absolute (or relative) maximal (or minimal) size
– User: number of samples for each object
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Types	of	Constraints:	Cluster-Level

• Maximum diameter 𝛾
– User: inter class dissimilarity

δ

δ

δ

ε

CL

M L

M L

γ



10

Types	of	Constraints:	Cluster-Level

• Split: clusters must be separated by at least 𝛿 [Davidson
and Ravi, 2005]

– User: intra class similarity

δ

δ

δ

ε

CL

M L

M L

γ



11

Types	of	Constraints:	Cluster-Level

• 𝜀-constraint: each point has within a radius 𝜀 at least one
other point in the same cluster [Davidson and Ravi, 2005]

– User: difficult to interpret
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Types	of	Constraints:	Instance-Level

• Must/Cannot Link
– User: objects of the same/different type(s)
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Constrained	Clustering	Algorithms
• 6 general approaches:

– k-Means
– Metric Learning
– Spectral Graph Theory
– Ensemble Clustering
– Collaborative Clustering
– Declarative
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Constrained	Clustering	Algorithms
• 71 papers proposing algorithms

8 Thomas Lampert et al.

Category Method
k-Means COBWEB (Fisher, 1987)

COP-KMeans (Wagsta↵ et al, 2001)
Seed-KMeans (Basu et al, 2002)
Constrained-KMeans (Basu et al, 2002)
ICOP-KMeans (Tan et al, 2010)
Sequenced Assignment COP-KMeans (Rutayisire et al,
2011)
MLC-KMeans (Huang et al, 2008)
SCREEN (Tang et al, 2007)
GA Dispersion & Impurity (Demiriz et al, 1999)
CVQE (Davidson and Ravi, 2005)
LCVQE (Pelleg and Baras, 2007)
PCK-Means (Basu et al, 2004b)
Lagrangian Relaxation (Ganji et al, 2016)
Tabu Search (Hiep et al, 2016)
Fuzzy CMeans (Grira et al, 2006)
Non-Negative Matrix Factorisation (Li et al, 2007)
Mathematical Program (Ng, 2000)
Minimal Capacity Constraints (Bradley et al, 2000)
Balanced Clustering (Banerjee and Ghosh, 2006)
Minimal Size (Demiriz et al, 2008)
Minimal Size & Balanced Clustering (Ge et al, 2007)

Metric Learning Euclidean (Klein et al, 2002)
Mahanalobis (Bar-Hillel et al, 2003, 2005; Xing et al,
2002)
Kullback-Leibler Divergence (Cohn et al, 2003)
String-Edit Distance (Bilenko and Mooney, 2003)
LRML (Hoi et al, 2008, 2010)
Partially Observed Constraints (Yi et al, 2012)

k-Means & Metric Learning MPCK-Means (Bilenko et al, 2004)
HMRF-KMeans (Basu et al, 2004b)
Semi-Supervised Kernel k-Means (Kulis et al, 2005,
2009)
CLWC (Cheng et al, 2008)

Spectral Graph Theory Adjacency Matrix Modification (Kamvar et al, 2003)
Out-Of-Sample Adjacency Matrix Modification
(Alzate and Suykens, 2009)
CSP (Wang and Davidson, 2010a; Wang et al, 2014)
Constraint Satisfaction Lower Bound (Wang et al, 2010)
Inconsistent Constraints (Rangapuram and Hein, 2012)
Logical Constraint Combinations (Zhi et al, 2013)
Distance Modification (Anand and Reddy, 2011)
Constraint Propagation Binary Class (Lu and Carreira-
Perpiñán, 2008)
Constraint Propagation Multi-Class (Lu and Ip, 2010;
Chen and Feng, 2012; Ding et al, 2013)
Kernel Matrix Learning (Zhang and Ando, 2006; Hoi
et al, 2007; Li and Ding, 2008; Li and Liu, 2009)
Guaranteed Quality Clustering (Cucuringu et al, 2016)

Ensemble Clustering SCEV (Iqbal et al, 2012)
Consensus Function (Al-Razgan and Domeniconi, 2009;
Xiao et al, 2016; Dimitriadou et al, 2002)

Collaborative Clustering Samarah (Forestier et al, 2010a)
Penta-Training (Domeniconi and Al-Razgan, 2008)

Declarative Approaches SAT (Davidson et al, 2010)
CP (Dao et al, 2013, 2016, 2017; Guns et al, 2016)
ILP Column Generation (Merle et al, 1999; Aloise et al,
2012; Babaki et al, 2014)
Restricted Cluster Candidates (Mueller and Kramer,
2010; Ouali et al, 2016)

Miscellaneous Constrained EM (Shental et al, 2013)
Evolutionary Algorithm (Handl and Knowles, 2006)
Random Forest (Zhu et al, 2016)

Table 1 Categorisation of methods found in the literature.
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Table 1 Categorisation of methods found in the literature.
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Algorithms:	k-Means
• Extends the classic k-Means algorithm
– Check whether proposed clustering modifications violate
constraints

– Or add penalty for violating constraints

• Some guarantee constraint satisfaction
– Problem with noisy constraints

• Iterative
– May only find local optimum
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Algorithms:	Metric	Learning
• Uses constraints to build
– Set of similar points from must-link
– Set of dissimilar points from cannot-link

• These are used to learn the metric
• Each algorithm is dependent upon the metric upon
which it is based (i.e. Euclidean, Mahalanobis, etc)
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Algorithms:	Constrained	Spectral	Clustering

• Based on the graph cut of a graph G = (𝑋, 𝐴)
– Edges described by a similarity matrix 𝐴:

• 𝑎,- = exp 1234
567

,

• 𝑑,- — distance (dissimilarity) between 𝑥, and 𝑥-
• 𝜎— user defined parameter

• Method:
– Construct normalised Laplacian matrix: 𝐿 = 𝐷=

7⁄ 𝐷 − 𝐴 𝐷=
7⁄ ,

• 𝐷— degree matrix
– Determine the first 𝑘 eigenvectors
– Embed graph into low dimensional space (another parameter)

• Perform k-Means in this space
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Algorithms:	Constrained	Spectral	Clustering

• Integrate constraints directly into the similarity matrix
– Force values of 𝐴 to be 0 (resp. 1) for points under CL (resp. ML)

constraints
– Use constraints as regularisation factors

• Advantages
– Clusters are not necessarily connected
– Polynomial time calculation
– Accepts over constrained problems

• Limits
– No guarantee of optimality
– Not incremental
– No cluster level or label constraints
– Eigenvalues for large graphs may be ill conditioned
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Algorithms:	Ensemble
• Apply many diverse algorithms (or same with
different parameters) and take consensus

• Constraints integrated:
– each learning agent integrates them in its own fashion
• Problem: constraints restrict diversity

– or apply them in the consensus function
• Builds a graph clustering approach on top, constraints
guide this
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Algorithms:	Collaborative
• Collaborative approach
– Execute several clustering algorithms in parallel
– Process guided by a coefficient taking into account:
• Similarity of the results
• Quality of the results
• Level of constraint satisfaction

Introduction

The conflict resolution

It is based on the intercluster similarity S and a quality
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Algorithms:	Collaborative
• Advantages
– Clusters not necessarily convex
– Accepts over constrained problems
– Incremental

• Limits
– Long processing time
– No guarantee of optimality
– No cluster level or label constraints
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Algorithms:	Declarative
• Optimisation problem under constraints 𝑆 =

𝑋, 𝐶, 𝐹
– 𝑆— clustering to be determined
– 𝑋 = 𝑥F,… , 𝑥H — data
– 𝐶 = 𝑐F,… , 𝑐J — constraints
– 𝐹 𝑋, 𝐶, 𝐹 — objective function (e.g. intra-class inertia)

• Search for a/the best solution — PPC
– Branch-and-bound optimisation: guarantees a global
optimum (if it exists) satisfying all constraints

• Large choice of constraints
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Algorithms:	Declarative
• CPClustering [Dao et al. 2017]

– Number of clusters: limited, i.e. 𝐾 ∈ 𝐾M,H, 𝐾MNO
– Optimisation criteria: cluster diameter; between cluster
distance; intra/inter-class inertia, …

– Constraints: must-link/cannot-link, size, diameter or
density of clusters, …

• Limits:
– Processing time
– Amount of data
– No solution if over-constrained
– Not incremental
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Constrained	Clustering	Implementations

• 12 implementations available

8 Thomas Lampert et al.
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Experiments
• 5 implementations evaluated
– COP-KMeans [Wagstaff et al, 2001]

– Spectral clustering (adjacency modification) [Kamvar et al, 2003]

– Spectral clustering (with regularisation) [Li and Liu, 2009]
– SAMARAH (collaborative) [Forestier et al, 2010]
– CPClustering (declarative) [Dao et al, 2017]

• 9 UCR datasets (time-series)
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Experiments
• Create 𝑁Q constraints using the reference data

• 𝑁Q ∈ 5%, 10%, 15%, 50% of the number of objects

• Total number of possible constraints: T(T1F)
5

• i.e. a very small ratio (50%): F
T1F
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• Create 𝑁Q constraints using the reference data
• 𝑁Q ∈ 5%, 10%, 15%, 50% of the number of objects

• Total number of possible constraints: T(T1F)
5

• i.e. a very small ratio (50%): F
T1F

• Validation:
– ARI: Adjusted Rand Index
– CSR: Constraints Satisfaction Ratio

Experiments
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Results
• ARI difference: constrained ARI – unconstrained ARI

• CSR difference: constrained CSR – unconstrained CSR

Method 5% 10% 15% 50%

COP-KMeans 0.004 (0.053) 0.011 (0.061) �0.001 (0.052) 0.011 (0.067)
Spec �0.034 (0.068) �0.030 (0.062) �0.043 (0.078) �0.049 (0.101)
SpecReg 0.262 (0.298) 0.263 (0.297) 0.263 (0.296) 0.261 (0.296)
CPClustering* �0.029 (0.089) �0.023 (0.067) �0.021 (0.076) �0.036 (0.085)
SAMARAH 0.066 (0.091) 0.070 (0.084) 0.064 (0.084) 0.076 (0.094)

Table 1: ARI difference between unconstrained clustering and constrained clustering
(Constrained ARI � Unconstrained ARI) for each constraint fraction averaged over all datasets,
standard deviations in parentheses.

Method 5% 10% 15% 50%

COP-KMeans 0.133 (0.078) 0.133 (0.078) 0.134 (0.077) 0.136 (0.075)
Spec �0.006 (0.063) 0.001 (0.037) �0.011 (0.052) �0.012 (0.050)
SpecReg 0.099 (0.129) 0.100 (0.125) 0.104 (0.123) 0.099 (0.124)
CPClustering* 0.215 (0.063) 0.215 (0.063) 0.215 (0.063) 0.215 (0.063)
SAMARAH 0.057 (0.043) 0.050 (0.038) 0.044 (0.034) 0.040 (0.034)

Table 2: Constraint satisfaction difference between unconstrained clustering and constrained clus-
tering (Satisfaction � Mean Consistency) for each constraint fraction averaged over all datasets,
standard deviations in parentheses.

increase in performance for all algorithms and all datasets, instead several influencing factors seem to137

be at play.138

5 Discussion139

5.1 Analysis of the results140

A multiple linear regression analysis was performed to uncover the factors that influence the change141

in clustering performance when constraints are introduced. The following factors were identified:142

Consistency when an algorithm tends to satisfy constraints in an unconstrained setting, adding143

further constraints should not considerably affect clustering performance.144

Silhouette Score when the clusters in a dataset overlap, adding constraints should lead to an increase145

in clustering performance. The overlap is measured using the Silhouette Score [33], which ranges146

from �1 (overlapping clusters) to 1 (separated clusters).147

Unconstrained ARI when an algorithm has a high baseline performance in unconstrained clustering,148

the benefit of constraints should be diminished.149

Algorithm certain algorithms may benefit from the introduction of constraints more than others.150

Each algorithm’s mean unconstrained ARI performance was subtracted from its constrained ARI151

performance samples, which formed the dependent variable of the analysis (1595 samples in total).152

The categorical predictor representing the algorithms was encoded by dummy variables and the153

remaining predictors were mean centred to allow interpretation of the intercept as the base group154

(the Spec algorithm). An initial correlation analysis revealed that Consistency and Unconstrained155

ARI are strongly correlated (r = 0.732 and p = 1.431e�267, the significance threshold was set at156

0.01). As Consistency is a pairwise measure of the performance in a subset of the data, while ARI is157

a pointwise measure of performance for the whole dataset they both capture similar information and158

therefore Unconstrained ARI was removed from the analysis.159

The result of the regression analysis is presented in Table 3. The model has a root-mean-squared error160

(RMSE) of 0.129, R2 = 0.561, Adjusted R2 = 0.559, F -Statistic = 338, and p = 1.160e�279161

(significance threshold was set at 0.01). Consistency has a large negative influence on ARI difference,162

indicating that, when all other factors remain constant, the higher consistency an algorithm has in an163

unsupervised setting, the less increase in ARI will result when adding constraints. This corroborates164

that which was found by Wagstaff et al. [40]. This analysis, however, uncovers additional facets to165

the problem. It was found earlier that certain algorithms react more favourably to the introduction of166
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COP-KMeans 0.133 (0.078) 0.133 (0.078) 0.134 (0.077) 0.136 (0.075)
Spec �0.006 (0.063) 0.001 (0.037) �0.011 (0.052) �0.012 (0.050)
SpecReg 0.099 (0.129) 0.100 (0.125) 0.104 (0.123) 0.099 (0.124)
CPClustering* 0.215 (0.063) 0.215 (0.063) 0.215 (0.063) 0.215 (0.063)
SAMARAH 0.057 (0.043) 0.050 (0.038) 0.044 (0.034) 0.040 (0.034)

Table 2: Constraint satisfaction difference between unconstrained clustering and constrained clus-
tering (Satisfaction � Mean Consistency) for each constraint fraction averaged over all datasets,
standard deviations in parentheses.

increase in performance for all algorithms and all datasets, instead several influencing factors seem to137

be at play.138

5 Discussion139

5.1 Analysis of the results140

A multiple linear regression analysis was performed to uncover the factors that influence the change141

in clustering performance when constraints are introduced. The following factors were identified:142

Consistency when an algorithm tends to satisfy constraints in an unconstrained setting, adding143

further constraints should not considerably affect clustering performance.144

Silhouette Score when the clusters in a dataset overlap, adding constraints should lead to an increase145

in clustering performance. The overlap is measured using the Silhouette Score [33], which ranges146

from �1 (overlapping clusters) to 1 (separated clusters).147

Unconstrained ARI when an algorithm has a high baseline performance in unconstrained clustering,148

the benefit of constraints should be diminished.149

Algorithm certain algorithms may benefit from the introduction of constraints more than others.150

Each algorithm’s mean unconstrained ARI performance was subtracted from its constrained ARI151

performance samples, which formed the dependent variable of the analysis (1595 samples in total).152

The categorical predictor representing the algorithms was encoded by dummy variables and the153

remaining predictors were mean centred to allow interpretation of the intercept as the base group154

(the Spec algorithm). An initial correlation analysis revealed that Consistency and Unconstrained155

ARI are strongly correlated (r = 0.732 and p = 1.431e�267, the significance threshold was set at156

0.01). As Consistency is a pairwise measure of the performance in a subset of the data, while ARI is157

a pointwise measure of performance for the whole dataset they both capture similar information and158

therefore Unconstrained ARI was removed from the analysis.159

The result of the regression analysis is presented in Table 3. The model has a root-mean-squared error160

(RMSE) of 0.129, R2 = 0.561, Adjusted R2 = 0.559, F -Statistic = 338, and p = 1.160e�279161

(significance threshold was set at 0.01). Consistency has a large negative influence on ARI difference,162

indicating that, when all other factors remain constant, the higher consistency an algorithm has in an163

unsupervised setting, the less increase in ARI will result when adding constraints. This corroborates164

that which was found by Wagstaff et al. [40]. This analysis, however, uncovers additional facets to165

the problem. It was found earlier that certain algorithms react more favourably to the introduction of166

4
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Statistical	Analysis
• Four potential ‘explanations’ for the loss/stagnation of quality:

– Consistency: does the unconstrained clustering already fulfil the
constraints [Wagstaff et al. 2006, Davidson et al. 2006]

– Incoherence: amount of internal conflict between the constraints
given a distance metric [Wagstaff et al. 2006, Davidson et al. 2006]

– Cluster overlap: initial classes are not separable, i.e. overlapping
– Algorithm: sensitivity of the algorithm to constraints
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Statistical	Analysis
• Four potential ‘explanations’ for the loss/stagnation of quality:

– Consistency: does the unconstrained clustering already fulfil the
constraints [Wagstaff et al. 2006, Davidson et al. 2006]

– Incoherence: amount of internal conflict between the constraints
given a distance metric [Wagstaff et al. 2006, Davidson et al. 2006]

– Cluster overlap: initial classes are not separable, i.e. overlapping
– Algorithm: sensitivity of the algorithm to constraints

constraints, Spec and CPClustering negatively and SpecReg and SAMARAH positively. Unexpectedly,167

however, the dataset’s silhouette score has a moderate positive correlation with ARI difference. This168

may be explained by considering what happens when a point that is subject to an ML constraint is169

surrounded by points belonging to another cluster (i.e. has a low, or negative, silhouette score). An170

algorithm is biased to cluster the ML constrained points together. This may, however, also have the171

effect of biasing any points similar to (therefore close to) a point linked by an ML constraint to be172

assigned to the same cluster, which in a dataset with a low silhouette score is more likely to be an173

incorrect assignment.174

Predictor Estimate p-value

Consistency �0.745 4.923e�87
Silhouette Score 0.419 2.636e�66
COP-KMeans 0.037 3.572e�4
Spec �0.056 3.553e�15
SpecReg 0.220 1.819e�88
CPClustering �0.059 9.943e�9
SAMARAH 0.088 7.109e�16

Table 3: ARI difference multiple linear regression coefficients (significance threshold was set at
0.01).

5.2 Constraint effectiveness175

It has been discussed that adding the maximum number of constraints does not necessarily lead to an176

increase in clustering accuracy. This implies that it is necessary to consider methods to measure the177

usefulness of constraints to determine whether they should be included or not.178

Work to this effect has been presented in the literature, Wagstaff et al. [40] demonstrate that there is a179

strong negative correlation between inconsistency and accuracy. In the experiments presented herein180

a negative correlation between ARI difference and consistency is found and it is true that, in general,181

when a high consistency is found, adding constraints does not improve performance (or sometimes182

decreases performance) and when a low consistency if measured, performance increases.183

Davidson et al. [14] demonstrate that constrained clustering improves performance when constraints184

are both informative and coherent. As has been demonstrated in this study, it is possible to measure185

informativeness (the inverse of what has been referred to herein as consistency) in constraints related186

to time-series as it is defined as the fraction of constraint violations when an algorithm is applied in187

an unconstrained manner. Coherence quantifies “the amount of agreement between the constraints188

themselves, given a metric D that specifies the distance between points” [14]. To achieve this, vectors189

are constructed between two points that are joined by ML and CL constraints. The constraints are190

coherent if the vectors are orthogonal to each other, and incoherent if they are parallel (and overlap).191

This is a useful measure when considering the Euclidean distance metric however, it is not obvious192

how this concept can be extended to DTW and therefore new measures to quantify the usefulness of193

constraints should be developed.194

6 Conclusions195

This work has explored the role of constraints when clustering time-series data. Through analysing196

the results of modifying and applying several algorithms to time-series datasets, several factors that197

influence the effectiveness of constraints have been identified, namely coherence and cluster overlap.198

This highlights the need for measures of constraint usefulness. The current definition of constraint199

coherence, which may indicate whether a constraint set will increase performance or not, is dependent200

of the distance measure used and cannot be extended to metrics without a definition of orthogonality201

(e.g. DTW). Furthermore, links between cluster overlap and constrained clustering performance offer202

new directions of research.203

5

1635	samples	(not	all	experiments	finished	on	time)
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Satellite	Image	Time-Series
• Zone Sud-Ouest : 11 images, 2007
• Objective: agricultural classification

Ground	TruthImage
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SpecRegCPClustering

Satellite	Image	Time-Series



33

BEST

Satellite	Image	Time-Series

SAMARAHSpec
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Satellite	Image	Time-Series
• Zoom …

SAMARAH
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Conclusions
• Promising results on time-series
• Coherence and cluster overlap explain some of the
variance observed

• Future
– Incremental constraints
– Sampling constraints
• Coherence measure for constraints using DTW?

– When do algorithms rely more on data vs constraints?


