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Abstract

Many pattern mining systems are designed to solve one specific prob-
lem, such as frequent, closed or maximal frequent itemset mining, effi-
ciently. Even though efficient, their specialized nature can make these
systems difficult to apply in other situations than the one they were de-
signed for. This chapter provides an overview of generic constraint-based
mining systems. Constraint-based pattern mining systems are systems
that with minimal effort can be programmed to find different types of pat-
terns satisfying constraints. They achieve this genericity by providing (1)
high-level languages in which programmers can easily specify constraints;
(2) generic search algorithms that find patterns for any task expressed in
the specification language. The development of generic systems requires
an understanding of different classes of constraints. This chapter will first
provide an overview of such classes constraints, followed by a discussion
of search algorithms and specification languages.

Keywords: Constraints, languages, inductive databases, search algorithms

1 Introduction

A key component of a pattern mining system is the constraint that is used by
the system. A frequent itemset mining system, for instance, is characterized by
the use of a minimum support constraint; an association rule mining system,
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similary, is identified by a minimum confidence constraint. Constraints define
to a large degree which task a pattern mining system is performing.

However, the focus of many pattern mining systems on one particular type of
constraint can make their use cumbersome. As an example, consider a frequent
itemset mining system that one wishes to apply in a context where the utility
of the items is important as well. As a basic frequent itemset mining system
does not support utilities, we cannot use it directly; we either have to:

• understand the code of the frequent itemset mining algorithm to add an
additional constraint to it;

• or, write a second algorithm for processing the results of the frequent
itemset mining system to evaluate the additional constraint for each of
the itemsets found.

Both options are cumbersome. The second option is likely to be computationally
inefficient if the number of frequent itemsets is large. The first option can be
efficient, provided that the programmer has a deep understanding of the code
that is being modified.

These disadvantages have led researchers to develop more general systems
that provide easy-to-use interfaces for specifying the constraints that the pattern
mining systems need to use during the search. The development of these systems
has involved several challenges:

• the identification of general classes of constraints, all of which can be
processed in a generic and similar way;

• the development of languages in which constraints can be expressed, such
that all expressions in the language correspond to constraints in a class of
constraints supported by a system;

• the development of search algorithms that can deal with constraints in a
certain class.

This chapter will provide an overview of the state-of-the-art for each of these
challenges. We will first formalize the problem of constraint-based pattern min-
ing, including a discussion of different classes of constraints. Subsequently, we
will discuss the most common search algorithms for these classes of constraints.
Finally, we will discuss the languages that allow for the expression of constraints
in pattern mining.

2 Problem Definition

Constraint-based mining starts from the observation that many pattern mining
problems can be seen as instances of the following generic problem statement:

Given

• a data language LD
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• a database D ⊆ 2LD with transactions

• a pattern language Lπ

• a constraint ϕ : Lπ × 2LD 7→ {0, 1}

Find all patterns π ∈ Lπ for which ϕ(π,D) = 1.

The pattern language typically describes the syntax of the patterns we wish
to find in the data. Constraints typically describe the statistical, syntactical, or
other requirements that we wish these patterns to satisfy on the data.

Frequent itemset mining (see chapter ...), for example, is an instance of this
generic setting, with the following choices:

• the database has transactions that are subsets of a given set of items I;

• the pattern language is the set of all subsets of I: Lπ = 2I ;

• the minimum support constraint ϕminsup(π,D) is true if and only if the
number of transactions of D that contain π is large enough, in other words,
it is true if and only if:

|cover(π)| = |{d ∈ D|π ⊆ d}| ≥ θ,

where θ is a user-defined threshold.

By modifying the pattern language, the data language and the constraints,
different data mining problems can be formalized. The main aim of constraint-
based pattern mining is to build generic languages in which programmers can
express pattern mining problems in terms of constraints, and to develop systems
that can process statements in these languages.

2.1 Constraints

Constraints can be categorized along several dimensions, for instance:

1. which information is used when evaluating the constraint? Possibilities
include that the constraint only evaluates the syntax of the pattern, that
the constraint requires a database of transactions, or that the constraint
requires a database with labeled transactions.

2. which properties do the constraints have? The most well-known property
is that of (anti-)monotonicity, but other properties have been identified as
well.

In terms of constraint-based pattern mining, combining constraints from dif-
ferent categories of the former dimension is typically easy, whereas this proves
challenging for the latter dimension. Hence, existing work has focused on the
latter dimension and we will elaborate on these constraint categories below.
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Anti-monotonicity Most pattern mining algorithms assume the existence of
a coverage relation between patterns and transactions in the data. In the case of
frequent itemset mining, for example, an itemset π covers a transaction d ∈ D
iff π ⊆ d; hence, the subset relation is used as coverage relation. In graph
mining, the subgraph isomorphism relation may be used; in sequence mining,
the subsequence relation.

A second important relation is the generality relation. A generality relation
is essentially a partial order on the set of patterns in Lπ. We will denote this
relationship with the symbol �: if pattern π1 is more general than pattern π2,
we will write π1 � π2.

A generality relation � is compatible with a coverage relation if it satisfies
the following property for all possible transactions d: if π1 � π2 and π2 covers
example d, then π1 covers example d.

A good generality relation is usually not difficult to choose. If the coverage
relation is transitive, one can always use the coverage relation as generality
relation as well. For instance, in itemset mining, the subset relation is usually
used as generality relation as well: an itemset π1 is more general than an itemset
π2 iff π1 ⊆ π2.

Based on the generality relationship, we can define the anti-monotonicity
property of constraints1. A constraint ϕ(π,D) is called anti-monotonic iff it
holds for all patterns π1, π2 that

if π1 � π2 and ϕ(π1, D) is false, then ϕ(π2, D) is false.

Minimum support is the most well-known constraint that is anti-monotonic,
but several other constraints are also anti-monotonic [21, 11]. Assuming that
we use the subset relation to determine the generality relation, the following
constraints on itemsets are anti-monotonic:

• the maximum length constraint |π| ≤ θ for a fixed θ;

• the maximum sum of costs constraint c(π) ≤ θ is anti-monotonic, where
c(π) sums up the costs of the items in the itemset, c(π) =

∑
i∈π c(i), and

c(i) ≤ 0 is a cost that is associated to each item;

• a generalization constraint, which for a given set I requires that all item-
sets found satisfy π ⊆ I;

• conjunctions or disjunctions of other anti-monotonic constraints.

These constraints can be generalized to other types of patterns as well.

Monotonocity Closely related to anti-monotonicity is monotonicity. A con-
straint is called monotonic iff for all patterns π1, π2:

if π1 � π2 and ϕ(π1, D) is true, then ϕ(π2, D) is true.

1Note that in some publications, anti-monotonic constraints are called monotonic, and
monotonic constraints anti-monotonic[21].
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In other words, monotonicity is the “reverse” of anti-monotonicity; if a con-
straint ϕ(π) is anti-monotonic, its negation ¬ϕ(π) is monotonic. This includes
constraints such as:

• the maximum support constraint |{d ∈ D|π ⊆ d}| ≤ θ;

• the minimum size constraint |π| ≥ θ;

• the minimum sum of costs constraint c(π) ≥ θ;

• a negated generalization constraint π 6⊆ I;

• a specialization constraint π ⊇ I.

This relationship between monotonic and anti-monotonic constraints, one of
reversal and negation, already hints at the difficulty in using both types of
constraints at the same time for efficient pattern enumeration.

Convertible (anti)-monotonicity Whether a constraint is (anti)-monotonic
depends on the generality relation chosen. One of the most well-known examples
is that of the maximum average cost of an itemset, c(π) =

∑
i∈π c(i)/|π| ≥ θ.

If we use the subset relation to define the generality, this constraint is not anti-
monotonic. Consider the following two items with their corresponding costs:
c(1) = 1 and c(2) = 3. If our cost threshold is 2, the average cost of {1, 2} is
2 and satisfies the requirement; however, itemset {2}, while a subset, does not
satisfy the constraint.

However, assume that we would use the following generality order:

π1 � π2 if we can obtain π1 from π2 by repeatedly removing from
π2 the item with the highest cost.

Then under this order the constraint is anti-monotonic: after all, by removing
the most costly items from an itemset, the average cost of the items in the
itemset can only go down and it hence also must satisfy the constraint.

Note that this order is compatible with the use of the subset relation as cov-
erage relation; hence, this constraint can be combined with a minimum support
constraint. Such an order can be incompatible with another order needed to
make another constraint anti-monotonic, however.

Constraints which have this property, i.e., that a different generality relation
needs to be used than the coverage relation to obtain (anti-)monotonicity, are
called convertible (anti)-monotonic in the literature [28].

Succinctness Succinctness was originally defined for itemsets [25], but we
will use a slightly different definition here which is applicable to other pattern
languages as well: we will call any constraint succinct that can be enforced by
manipulating the data. Consider the following two examples:

• we want to find frequent itemsets without item i: if we remove item i from
the database, we will no longer find such itemsets;
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• we want to find frequent itemsets that include item i: if we remove all
transactions without item i from the database, and then remove item i
from the remaining transactions, we can add item i to every itemset we
find in the resulting database to obtain the desired set of itemsets.

These examples can easily be generalized to require the inclusion or exclusion
of an itemset π ⊆ I.

Condensed representations The set of patterns satisfying the above con-
straints may still be large. Condendensed representations consitute an additional
approach for reducing a set of patterns. The main idea is to determine a small
set of patterns that still is sufficiently large to determine a full set of patterns.
The property that a pattern is part of a condensed representation can also be
seen as a constraint.

We will discuss two of the most well-known cases here.

Given a generality relation�, a pattern π is called closed if there is no
more specific pattern π′ with π ≻ π′ such that cover(π) = cover(π′).

Intuitively, closed frequent patterns [27] allow one to recover a set of frequent
itemsets together with their supports.

A subtle issue is the combination of the closedness constraint with other
constraints. As an example, consider the maximum size constraint. One can
distinguish two settings:

• a setting in which one searches for patterns satisfying the size constraint
among those patterns that are closed;

• a setting in which one searches for patterns that are closed, restricting
the set of patterns that are considered in the closedness definition only to
those that satisfy the constraint.

As an example, assume that {1} is not closed and that {1, 2} is closed, while
we have a maximum size constraint of 1. Then itemset {1} would not be in the
output in the first setting, but would be in the output of the second. Constraint-
based pattern mining systems can differ in their approach for dealing with this
issue.

Another condensed representation is that of maximal patterns.

Given a generality relation � and constraint ϕ, a pattern π that
satisfies constraint ϕ is called maximal with respect to constraint
ϕ if there is no more specific pattern π′ with π ≻ π′ such that π′

satisfies the constraint.

Compared to closed itemsets, maximal itemsets [1, 21] no longer allow one to
recover the supports of a set of patterns.

If the constraint ϕ is a minimum support constraint, one typically refers
to maximal frequent patterns. Whereas maximal frequent patterns are the
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most popular, it can also be useful to study maximality with respect to other
constraints. Essentially, any anti-monotonic constraint defines a border in the
space of patterns where all patterns that satisfy the constraints are on one side
of the border, while all other patterns that do not satisfy it are on the other
side [21, 11].

Similarly, also a monotonic constraint defines a border: in this case, the
border one is looking for is that of minimal patterns that satisfy the constraints.

Different borders can be combined. Probably the most well-known example
of this is found in the analysis of supervised data. If the database consists of
two classes of examples, one can ask for all patterns that are frequent in the
one, but infrequent in the other; the resulting set of patterns has two borders:
one of the most specific patterns in this set, the other of the most general ones.

Boundable Constraints The minimum support constraint is one example
of a constraint of the kind f(π) ≥ θ. Over the years, more complex functions
have been studied. One example is that of accuracy (see the chapter on su-
pervised patterns), which calculates the accuracy of a pattern when used as
a classification rule on supervised data. Many such functions no longer have
the (anti-)monotonicity property. In some cases, however, one can identify an
alternative function f ′ such that:

• it is feasible to mine all patterns with f ′(π) ≥ θ;

• f ′(π) ≥ f(π).

In this case, all patterns satisfying f(π) ≥ θ could be determined by first mining
all patterns with f ′(π) ≥ θ and then calculating f(π) for all patterns found.
Function f ′ can be considered a relaxation of function f [31]. In Chapter ?? it
was discussed that for supervised data such bounds often exist.

3 Level-Wise Algorithm

Most constraint-based mining algorithms can be seen as generalized versions
of frequent pattern mining algorithms. Similar to frequent itemset mining al-
gorithms, consequently, both breadth-first (BFS ) or level-wise, and depth-first
search algorithms have been proposed. The earliest techniques typically were
BFS approaches, on which later works improved. Hence, we discuss them first.

3.1 Generic Algorithm

The setting which is closest to frequent pattern mining is that of constraint-
based mining under anti-monotonic constraints. In this case, we can perform
a level-wise search that is mostly equal to that of the Apriori algorithm [21].
The search starts from the empty pattern, and proceeds by specializing this
pattern in a breadth-first fashion.
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In Algorithm 1, a description of this algorithm is given. In this pseudo-code,
we use two operators: a downward refinement operator ρ to specialize patterns
and an upward refinement operator δ to generalize patterns. A downward re-
finement operator is an operator which for any pattern π returns a set of more
specific patterns (i.e. for all patterns π′ ∈ ρ(π) it holds that π ≻ π′). Typically,
we assume that this operator is globally complete, i.e. its repeated application
starting from the empty pattern will produce the complete pattern language2.
Furthermore, this operator works in “small steps”, it tries to create new patterns
which are minimally more specific (least specific specializations).

An example of a downward refinement operator for itemset mining is ρ(π) =
{π ∪ {i} | i > max(π)}, assuming a total order > on the items; eg., if our
language is 2{1,2,3,4}, with the usual order of integers over the items, ρ({2}) =
{{2, 3}, {2, 4}}.

Similarly, the upward refinement operator δ returns generalizations. For a
given pattern π, it is assumed to only generate patterns that should have been
seen before pattern π by the level-wise algorithm.

The key property on which the algorithm relies is the anti-monotonicity of
constraint ϕ under the chosen generality relation: by refining only patterns that
satisfy the constraint in line 6 and by checking generalizations in line 7, patterns
are removed from consideration that are known to specialize patterns that do
not satisfy ϕ.

Algorithm 1 Level-Wise Search(Constraint: ϕ )

1: C := {∅}
2: S := ∅
3: while C 6= ∅ do
4: S := {π ∈ C |ϕ(π) is true}
5: S := S ∪ S
6: C′ :=

⋃
π∈S ρ(π)

7: C := {π ∈ C′ | δ(π)\S = ∅}
8: return F

Note that this algorithm can also be applied to convertible and boundable
constraints [30]: in this case, a modified generality relation or constraint is
used. It can also be applied in a straightforward manner if there are both
anti-monotonic constraint and non anti-monotonic constraints: in principle, we
ignore the non anti-monotonic constraints during the search, and evaluate the
remaining constraints for all found patterns afterwards, in a post-processing
phase.

In the presence of monotonic constraints, we can improve somewhat on the
need to check all patterns [21, 18, 19, 11]. The main idea is here to traverse the
patterns in a level-wise fashion in reverse order by starting with the most specific

2More formally, let ρ
n(π) denote the set

⋃
π′∈ρ(π)

ρ
n−1(π′), with ρ

0(π) = π, and let

ρ
∗(π) =

⋃
∞

i=1
ρ
i(π), then a refinement operator is complete if ρ∗(∅) equals the pattern lan-

guage L.
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patterns that satisfy the anti-monotonic constraint. Since the generalizations
of a pattern that does not satisfy a monotonic constraint will not satisfy the
constraint either, we can stop this reverse traversal at the point at which we
no longer have patterns that satisfy the constraint. This does not change the
fact that we cannot enforce the monotonic constraint in the first mining phase,
however.

The level-wise algorithm is easily changed to deal with border representa-
tions. Assume that upward refinement operator δ generates all least general
generalizations of a pattern π (a pattern π′ is a least general generalization for
a pattern π if there is no pattern π′′ with π′ ≻ π′′ ≻ π). Then for each pattern
π that satisfies an anti-monotonic constraint, we can essentially identify its im-
mediate generalizations, which are clearly not maximal, and remove them from
the solution set.

For instance, in the case of itemset mining such an operator is δ(π) =
{π\{i} | i ∈ π}. It would remove all immediate subsets of an itemset from
the output. As it is assumed that the upward refinement operator will always
generate patterns that must have been seen already, we do not need to explicitly
remove other generalizations from the output: they will have been removed at
an earlier stage. With similar ideas, the minimal patterns on the border of a
monotonic constraint can also be found.

4 Depth-First Algorithm

Note, however, that even though the output of these modified BFS algorithms
for finding borders is correct, the running time will not be much better than
that of an algorithm that generates all patterns satisfying the constraint. Most
algorithms that are able to obtain dramatically better run times in practice are
depth-first algorithms.

4.1 Basic Algorithm

The most basic depth-first constraint-based mining algorithm is given in Fig-
ure 2 and only supports anti-monotonic constraints.

Algorithm 2 Depth-First Search(Constraint: ϕ , pattern π)

1: F := ∅
2: if ϕ(π) is true then
3: for π′ ∈ ρ(π) do
4: F := F ∪ Depth-First Search (ϕ,π′)
5: return F

Essentially, compared to the earlier level-wise algorithm, this algorithm tra-
verses the search space in a different order in which some long patterns are
already considered before some shorter patterns are evaluated. As a result, op-
timizations based on the fact that short patterns have been seen before long
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patterns are not used. In practice, however, these algorithms can be more effi-
cient. The reason for this is that most implementations take care to maintain
datastructures which allow for incremental constraint evaluation: for instance,
to calculate the support of a pattern, they do not traverse the whole dataset, but
only consider those transactions covered by the pattern’s parent in the search
tree. As depth-first algorithms do not need to maintain a large number of can-
didates, maintaining such additional data structures is feasible. A well-known
datastructure in this context is the FP-Tree (see the chapter on pattern growth
for more details) [29].

Note that the above algorithm works for any pattern language, including
graphs, strings and trees, as long as we know that the constraint ϕ is anti-
monotonic.

When some constraints are not anti-monotonic, a basic approach for dealing
with them, as in the case of breadth-first search, is to ignore them during the
search and post-process the output of the above agorithm. A similar trick can
be used for boundable constraints. In this case, the anti-monotonic bound is
used during the depth-first search, and each pattern found is finally evaluated
using the original constraint in a post-processing step.

Many studies have explored the possibilities for deriving more efficient al-
gorithms for more complex constraints than anti-monotonic constraints. Most
of these studies have focused on the pattern language of itemsets, as it appears
additional pruning is most easily derived for itemsets. We will discuss these
approaches in a generic way in the next paragraph, inspired by work of Bucila
et al. and Guns et al. [8, 14].

4.2 Constraint-based Itemset Mining

The key idea in efficient depth-first constraint-based itemset mining algorithms
is to maintain four sets in each node of the search tree, which are upper- and
lower-bounds on the itemsets and transaction sets that can still be found:

• IU , the largest itemset we believe we can still find;

• IL, the smallest itemset we believe we can still find;

• TU , the largest transaction set we believe we can still find;

• TL, the smallest transaction set we believe we can still find.

For some constraints, not all these 4 sets need to be maintained, but in the most
generic setting all 4 sets are maintained.

During the search, any modification of any of these 4 sets may be a reason
to modify another of these 4 sets as well. We will refer to this process of modi-
fying one set based on the modification of another set as propagation. Different
approaches differ in the algorithms and data structures used to do propagation.

An overview of the generic algorithm is given in Algorithm 3, in which
IL = TL = ∅, IU = I and TU = D. Line 1 performs the propagation for the
constraints. Propagation may signal that no solution can be found in the current
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branch of the search tree by setting stop to true. If the lower- and upper-bound
for the itemset are identical, a pattern has been found and is added to the
output. Otherwise, in line 6 an item is selected, which is recursively added to
the itemset (line 7), or removed from consideration (line 8).

Note that the same itemset can never be found twice: an item which is added
in line 7, will never be added to an itemset that is considered in the search tree
explored in the call of line 8.

Algorithm 3 Depth-First Search(Constraint: ϕ , IL, IU , TL, TU )

1: I ′L, I
′
U , T

′
L, T

′
U , stop := Propagate (IL, IU , TL, TU , ϕ)

2: if not stop then
3: if I ′L = I ′H then
4: return {I ′L}
5: else
6: Pick an item i ∈ I ′U\I

′
L

7: return Depth-First Search(ϕ, I ′L ∪ {i}, I ′U , T
′
L, T

′
U ) ∪

8: Depth-First Search(ϕ, I ′L, I
′
U\{i}, T

′
L, T

′
U )

9: else
10: return ∅

We will now consider how this algorithm can be instantiated for different
types of mining settings.

Frequent Itemset Mining This is the most simple setting. Essentially, in
this case, the following propagation steps are executed:

1. T ′
U is restricted to cover(IL);

2. I ′U is restricted to those items in IU that are frequent in the database
containing only the transactions of T ′

U (in other words, the items that are
frequent in the projected database for itemset IL, see chapter ??);

T ′
L and I ′L are not modified by propagation.
For these choices, the search is highly similar to that of Eclat or FP-Growth;

at every point in the search tree, we maintain a list of candidate items that can
be added to the current itemset; the set of candidate items is reduced based on
the minimum support threshold.

Attentive readers may have noticed that the search tree for the generic al-
gorithm presented here is binary, whereas for most itemset mining algorithms
the tree is not binary. This is, however, only a minor conceptual difference:
the recursive calls in line 8 of our generic algorithm essentially correspond to a
traversal of the candidate list in traditional frequent itemset mining algorithms,
where we remember which items we may no longer consider.

The clear benefit of the non-traditional perspective is that other constraints
can be added with minor effort.
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Minimum Sum of Cost and Minimum Support A first approach for deal-
ing with a monotonic minimum-sum-of-cost constraint is to add the following
propagation [28]:

3 if the sum of costs of itemset I ′U is lower than the desired threshold, set
stop to true.

The rationale for this propagation step is that we can stop a branch of the search
if the most expensive itemset we can still reach is not expensive enough.

The benefit of this approach is that this propagation step is relatively easy
to calculate, while for high thresholds it will already prune effectively.

A more elaborate approach was proposed by Bonchi et al. [7, 6, 5]. Its
essential observation is that if an itemset needs to be both frequent and expen-
sive, this means that a certain number of transactions in the data needs to be
expensive as well. This leads to the following propagation steps:

1. T ′
U is set to TU ∩ cover(IL);

2. I ′U is set to those items in IU that are frequent in the database restricted
to the transactions in T ′

U ;

3. from T ′
U all transactions d are removed for which c(d ∩ I ′U ) < θ, where θ

is the cost threshold;

4. if T ′
U was changed, go back to step 2;

5. if I ′U ⊂ I ′L, set stop to true.

The interesting idea in this approach is the presence of a feedback loop: the
removal of items can make some transactions too cheap; when a transaction is
too cheap, it will not be in the cover of an itemset, and we can remove it from
consideration; this however will reduce the support of items further, potentially
making them infrequent in the projected database.

The advantage of this approach is that it can reduce the size of the search
tree even further. The disadvantage is that the propagation is more complex
too calculate, as it involves a traversal of the data. To remedy this, Bonchi et
al. [6] studied settings in which the above loop is not executed in all nodes of
the seach tree.

Minimum and Maximum Support A similar idea can be used when we
have a minimum support threshold on some transactions (D+), and a maximum
support threshold on the other transactions (D−) [9, 19].

1. T ′
U is set to cover(IL);

2. I ′U is set to those items in IU that are frequent in the database restricted
to the transactions in T ′

U ∩ D+;

3. T ′
L is set to cover(IU );
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4. if |T ′
L ∩ D−| > θ, where θ is the maximum support threshold for the

negative examples, then set stop to true.

In this approach, the main idea is that if the lowest support that can be reached
on the negative transactions is not low enough, we can stop the search.

Maximal Frequent Itemsets Of particular interest in the constraint-based
mining literature is the discovery of border (or boundary) representations. The
simplest such setting is the discovery of maximal frequent itemsets, which can
be obtained by means of the following propagations:

1. T ′
U is set to cover(IL);

2. I ′U is set to those items in IU that are frequent in the database restricted
to the transactions in T ′

U ;

3. T ′
L is set to cover(I ′U );

4. if some item not in I ′U is frequent in the database restricted to the trans-
actions in T ′

L, set stop to true.

5. if |T ′
L| ≥ θ, I ′L is set to I ′U .

The arguments for these steps are the following: the set T ′
L represents those

transactions that will be covered by any itemset we will find in the future; if
there is an item that covers a sufficiently large number of these transactions,
but we cannot add this item in the current branch of the search tree, we stop
traversing this branch in line 4, as elsewhere we will find itemsets that include
this item.

On the other hand, if the itemset consisting of all remaining items is frequent,
clearly this itemset must be maximal; we can directly include all items in the
itemset.

This search strategy is embodied in the MaxMiner algorithm [1]. It was gen-
eralized to the case of finding border representations under arbitrary monotonic
and anti-monotonic constraints by Bucila et al. [8].

Closed Frequent Itemsets Closed itemset mining can be achieved by an-
other modification of the propagation for frequent itemset mining:

1. T ′
U is set to cover(IL);

2. I ′U is set to those items in IU that are frequent in the database restricted
to the transactions in T ′

U ;

3. let I ′′ contain those items in I which are present in all transactions in T ′
U ;

4. if I ′′ contains items not in I ′U , set stop to true; otherwise, let I ′L be I ′′.
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Remember that in closed itemset mining the task is to find itemsets such that
no superset has the same coverage. This propagation ensures this: in line 4, if
an item can be added to the current itemset without changing the coverage, it
will be added immediately if this is allowed; however, if this item may not be
added, as we branched over it earlier, we stop the search, as we can no longer
find closed itemsets in the current part of the search space.

This search strategy is embodied in the LCM closed itemset mining algo-
rithm [32]. The combination of closed itemset mining with constraints was
studied in more detail in the D-Miner system by Besson et al. [2, 3].

4.3 Generic Frameworks

The similarity between these depth-first search algorithms indicates that it may
be possible to combine different constraints and condensed representations. In-
deed, this is the key idea underlying most generic frameworks for constraint-
based mining.

The DualMiner algorithm [8] essentially represents a generic depth-first al-
gorithm for finding border representations that extends the ideas found in the
MaxMiner algorithm. The authors of that work brought this development
to its logical conclusion by introducing the concept of “witnesses” [17], item-
sets on which constraint satisfaction is tested to derive pruning information
for parts of the search space. Witness-based mining subsumes mining under
(anti-)monotonic and convertible constraints, and is capable of handling addi-
tional constraint classes, and mining under conjunctions of constraints. The
D-Miner system combines closed itemset mining (formal concept analysis) with
constraints [2, 3].

The Constraint Programming for Itemset Mining framework [14] is built on
the observation that constraint-based search, and constraint programming in
particular, has been studied extensively in the general artificial intelligence lit-
erature. It shows that the mining tasks discussed earlier can be reformalized
in terms of constraints present in generic constraint programming systems; fur-
thermore, such systems provide a generic framework for constraint propagation
which makes it easy to combine different constraints.

4.4 Implementation Considerations

In the above description, we intentionally left unaddressed how the indicated
propagation is performed in detail. In principle, all different data structures
that have been studied in the frequent itemset mining literature can be used in
this context as well. For instance, the MaxMiner and DualMiner algorithms use
vertical representations of the data most similar to that of Eclat; the FP-Bonsai
algorithm, on the other hand, uses FP-Trees [7]. The impact of data structures
in a Constraint Programming framework was studied by Nijssen et al [26]. These
studies confirm that for good run times the choice of data structure is important;
however, many of the above propagation procedures can be adapted to different
data representations, and hence the two aspects can be considered orthogonal.

14



5 Languages

Most of the systems studied earlier require a language for the specification of
constraints. Roughly speaking, three categories can be distinguished within
these languages: special purpose languages, SQL inspired languages, and con-
straint programming based languages.

Special purpose languages Many constraint-based mining systems imple-
ment a small special purpose language. As an example, this is an expression in
the language underlying the SeqLog system [20]:

database ca = smiles_file("molecules.ca");

database ci = smiles_file("molecules.ci");

predicate ca = minimum_frequency(ca, 10);

predicate ci = maximum_frequency(ci, 500);

mine ca and ci;

Essentially, this language provides a small set of built-in primitives such as
smiles_file for reading a data file, minimum_frequency for specifying a min-
imum support constraint and maximum_frequency for specifying a maximum
support constraint. For each of these primitives, the system is aware of the
properties such as (anti-)monotonicity, which ensures that any conjunction or
disjunction of constraints that is written is down can be processed by the system.

Similar special purpose languages were proposed by several other authors
[31, 23]; they differ in the constraints that are supported and the type of patterns
that can be found (itemsets [31, 23], strings [12, 20], ...).

Languages built on SQL A clear disadvantage of special purpose languages
is that they are yet additional languages that the programmer has to learn.
Given that many datasets are stored in databases, several projects have studied
the integration of constraint-based pattern mining in database systems.

The first class of such methods aims to extend SQL with additional syntax
for the formalization of data mining tasks. One early example is the MINE RULE

operator [22]:

MINE RULE Associations AS

SELECT DISTINCT 1..n item as BODY, 1..n item AS HEAD,

SUPPORT, CONFIDENCE

FROM Purchase

WHERE price <= 150

GROUP BY transaction

EXTRACTING RULES WITH SUPPORT: 0.1, CONFIDENCE: 0.2

This example mines association rules with minimum support 0.1, confidence 0.2,
limiting the search to items with a price lower than $150, a succinct constraint.
Another example is the DMQL language [15]:
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FIND association rules

RELATED TO beer, wine, diapers

FROM products

WHERE value >= 100

WITH support threshold = 0.1

WITH confidence threshold = 0.2

In this example we search for association rules related to three specific products,
in those transactions that have a value higher than 100; the parameters of the
association rule discovery process are similar to the previous example. A third
example is SPQL [5].

The advantage of these languages is that well-known syntax can be used for
the expression for constraints. Furthermore, common SQL syntax can be used
to specify the input of the mining task or to process its output further.

At the same time, the programmer still has to learn the additional primitives,
such as the FIND or MINE RULE keywords. An alternative perspective is to
avoid extending the language, but to add mining views to a database [4]. They
are virtual tables, which, once queried, will trigger the execution of mining
algorithms. This is an example:

SELECT R.rid, C1.*, C2.*, R.conf

FROM Sets S, Rules R, Concepts C1, Concepts C2,

WHERE R.cid = S.cid AND C1.cid = R.cida AND C2.cid = R.cidc AND

S.supp >= 30 AND R.conf >=80

Here, Sets, Rules and Concepts are virtual mining views.
A limitation of most SQL-based approaches is however that they are lim-

ited to itemset patterns or association rules. How to specify graph mining or
sequence mining tasks in this context is still an open question. Most constraint-
based graph mining or sequence mining systems currently use special purpose
languages.

The general idea of linking constraint-based mining to database querying has
been studied in the area of inductive databases and inductive querying [16, 10].

Constraint programming Constraint-based mining has many similarities to
generic constraint satisfaction problem (CSP) solving as studied in the Artificial
Intelligence (AI) community. Both areas essentially require the discovery of solu-
tions in a space of possible solutions satisfying constraints. To deal with generic
CSPs, the AI community has developed generic systems known as constraint pro-
gramming systems. These systems provide languages in which programmers can
specify constraint satisfaction problems; statements in these languages can be
solved by various types of solvers, including generic propagation-based solvers.
As we have seen earlier, many depth-first constraint-based itemset mining sys-
tems are also based on propagation, and hence it is not surprising that generic
constraint-based itemset mining fits naturally into a constraint programming
context as well.
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This observation was used by Guns et al. to formalize constraint-based
itemset mining tasks in generic constraint programming languages [14, 13]. This
is an example in the most recent version of the MiniZinc constraint programming
language:

int: Nr I; int: NrT; int: Freq;

array[1..NrT] of set of 1..NrI: TDB;

var set of 1..Nr I: Items;

constraint card ( cover ( Items, TDB ) ) >= Freq;

solve satisfy;

It specifies the task of frequent itemset mining; cover is a function available in
a MiniZinc library, implemented in the MiniZinc language ifself as well.

Statements in the MiniZinc language can be executed by a generic constraint
programming system, or by a specialized data mining system, if one exists [13].
However, it was shown that generic constraint programming systems implement
many types of propagation automatically, and hence that specialized systems
are often not needed if a task can be modelled in the MiniZinc language.

Similar to the SQL-based languages, it is at this moment not understood
how to integrate graph mining or sequence mining tasks in an elegant matter in
the CP setting.

6 Conclusions

In this chapter we provided an overview of classes of constraints, algorithms for
solving constraint-based mining problems and languages for specifying contraint-
based mining tasks.

The trend in constraint-based mining has been to build increasingly generic
systems. While initially constraint-based mining systems provided special pur-
pose languages that only supported slightly more constraints than specialized
frequent itemset mining algorithms did, in recent years the range of constraints
has expanded, as well as the genericity of the languages supporting constraint-
based mining, culminating in the integration with generic constraint satisfaction
systems and languages.

Several open challenges remain. These include a closer integration of constraint-
based mining with pattern set mining, getting a better understanding of how to
integrate statistical requirements in constraint-based mining systems, and min-
ing structured databases such as graph or sequence databases using sufficiently
generic languages.
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