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Abstract Using pattern mining techniques for building a predictive model
is currently a popular topic of research. The aim of these techniques is to
obtain classifiers of better predictive performance as compared to greedily
constructed models, as well as to allow the construction of predictive models
for data not represented in attribute-value vectors. In this chapter we provide
an overview of recent techniques we developed for integrating pattern min-
ing and classification tasks. The range of techniques spans the entire range
from approaches that select relevant patterns from a previously mined set
for propositionalization of the data, over inducing pattern-based rule sets, to
algorithms that integrate pattern mining and model construction. We pro-
vide an overview of the algorithms which are most closely related to our
approaches in order to put our techniques in a context.

1 Introduction

In many applications rule-based classification models are beneficial, as they
are not only accurate but also interpretable. Depending on the application,
these rules are propositional, i.e. of the kind

if income of a customer is high and loans is low
then predict the customer is good,

or relational or graph based, i.e. of the kind

if carbon is connected to a nitrogen in a molecule
then predict the molecule is active.
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Finding such rules is a challenge for which many algorithms have been pro-
posed. Initially, most of these approaches were greedy [Coh95, Mit97]; due
to the use of heuristics, however, these algorithms may end up in a local op-
timum instead of a global one. In particular on structured domains, such as
the example in chemoinformatics listed above, certain rules are hard to find
by growing rules in small steps. For instance, in molecules, a benzene ring (a
ring of 6 carbons) is an important structure with special properties; however,
only after adding 6 bonds in a graph does this structure emerge. A greedy
algorithm is not likely to find this structure automatically. Algorithms that
are not greedy, but instead investigate a larger search space or even provide
optimal solutions according to well-chosen criteria, may hence be preferable
in these applications.

However, given the large search space of rules in most applications, making
an exhaustive search feasible is a major challenge. To address this challenge,
pattern mining algorithms may be useful. Pattern mining is one of the most
studied topics in data mining and focuses mostly on the exhaustive enumera-
tion of structures in databases. A pattern can be thought of as the antecedent
of a rule. Even though patterns were originally studied for descriptive tasks
[AMS™96], an obvious question is how to exploit them also in predictive tasks,
where the aim is to exhaustively search through a space of rule antecedents.

Even once we have found a set of patterns (or rules), as mined by pattern
mining techniques, these do not immediately correspond to a good classifier.
The next question is how we can select and combine patterns for accurate
classification models. This is the problem that we study in this chapter.

The probably most simple approach for using patterns in classification
models is as follows:

e a pattern mining technique is used to find a large set of patterns;

e a new feature table is created, in which every column corresponds to a
pattern, and each row corresponds to an element of the data set;

e a model is learned on this new table, where any learning algorithm can be
used that can deal with binary data.

The process is illustrated in Figure 1. It is conceptually simple to use as
the learning algorithm is treated as a black box. A deeper understanding of
classification algorithms is not needed, thus making this approach very use-
ful for non-computer scientists, such as biologists or chemists. Particularly
in applications with structured data, such as (bio-)chemistry, this strategy
turned out to be attractive and was among the first pattern-based classi-
fication approaches [LZ099]. It was used successfully to classify sequences
[LZ099, KRO1], graph structures [KR01, DKWKO05, KNK*06, BZRN06] and
also attribute-value data [DK02]. Its popularity today is attested by the con-
tinued use in recent publications [CYHYO08, BZ09] as well as a workshop
devoted to this topic [KCFS08].

Many extensions to the basic procedure are possible. The main complica-
tion that was already faced in the early days of pattern-based classification
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was the large number of patterns produced by pattern mining algorithms
[LHM98]. At the time few learning algorithms were commonly known that
could deal with large feature spaces (for instance, SVMs for regression were
only introduced by Vapnik in 1996, in the same year that the term ‘frequent
itemset’ was introduced). It was necessary to reduce the number of patterns
as much as possible. Two approaches can be taken to achieve this.

The direct approach, in which the classifier construction and the feature
selection are combined: the selection procedure is made such that the se-
lected patterns are directly inserted in a rule-based classifier [LHM98].

The indirect approach, in which the feature selection is separated from the
classifier construction [LZ0O99]. This step is also indicated in Figure 1.

An advantage of the direct approach is that it no longer treats the clas-
sifier as a black box. One of the potential advantages of using patterns —
interpretable classifiers— is hence not negated in this approach.

This chapter provides an overview of several recent approaches towards
classification based on patterns, with a focus on methods that we proposed
recently. The chapter is subdivided in sections that roughly correspond to
the steps illustrated in Figure 1.

The first step in the process is the pattern mining step. The constraint
which has traditionally been used to determine if a pattern is relevant and
should be passed on to the next phase, is the minimum support constraint.
If the patterns are used for classification purposes, frequent features may
however not always be relevant; for instance, consider a pattern which covers
all elements of a data set, and hence will never distinguish classes from each
other. An alternative is to search for only those patterns which show a cor-
relation with the target attribute. Section 3 discusses correlation constraints
that can be applied to individual patterns to determine their relevance, and
how to enforce them during mining, based on the solution proposed in [MS00].

Once a pattern mining technique has generated patterns, it is often the
case that these patterns are correlated among each other. Section 4 discusses
indirect methods for selecting a subset of useful patterns from a given set
of patterns, and places two techniques that we recently proposed [RZ07,
BZ09] in a wider context [KH06a, KHO6b, BYT*08]. These methods are
independent of the classifier that is applied subsequently.

Given that patterns can be seen as rules, several algorithms have been
proposed that take a set of patterns as input and use these patterns as rules
to build a rule-based classification model

Subsequently, Section 5 discusses direct methods for selecting patterns
from a pre-computed set of patterns. Next to traditional methods [LHM98,
LHPO1] we summarize a method we proposed [ZB05].

All approaches mentioned so far assume that the patterns, and the corre-
sponding feature table, are created in a separate, first step. However, in more
recent papers a tight integration has been studied, in which the learning algo-
rithm calls the pattern mining algorithm iteratively as required to create new
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Fig. 1 The stepwise approach to use patterns in classification models.

features, and the construction of a feature table is not a separate phase. In
addition to discussing approaches we proposed [CGSBO08, NF07, BZ05], Sec-
tion 6 also presents an argument for upgrading the third technique described
in Section 4 [KHO06a] to the integrated setting.

An overview of the methods is provided in Table 1.

First, however, Section 2 briefly reviews the basic principles of pattern
mining, and introduces the notation that we will be using.

2 Preliminaries

We assume given a data set D consisting of tuples (x,y), where y € C is
a class label and x € A is a description of an element of the data set. In
the simplest case, this description is a tuple of binary attributes, that is,
A = {0,1}"; however, x may also be more complex, for instance, a labeled
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Classifier Construction
Indirect Direct
(Separate from pat. selection) (Integrated with pat. selection)

Separate Pattern Mining Section 4 Section 5
(Post-processing patterns) e Exhaustive search e CBA
e The chosen few ¢ CMAR
e Maximally informative sets o CtC
Integrated Pattern Mining Section 6
(Iterative pattern mining) e Maximally informative sets o FitCare
e DLS8
o Tree?

Table 1 Comparison of pattern set mining techniques discussed in this chapter.

graph (V, E, X, \), where V is a set of nodes, E C V x V is a set of edges,
and A is a function from V to labels in X

We can partition a dataset according to the class labels; that is, for a given
¢ € C, we define that D¢ = {(x,y)|(x,y) € D,y = c}.

A pattern 7 is a function from A to {0,1}. There are many types of pat-
terns. The simplest type of pattern is an itemset. An itemset is represented
by a set I C {1,...n}. When an itemset is applied to a binary vector x, it
predicts 1 iff for all 4 € I: x; = 1. We usually say that pattern I is included
in element x. Also patterns can be more complex, for instance, graphs G.
Usually, a graph G predicts 1 for a graph that is an element of the data set
iff G is subgraph isomorphic with this graph.

Given a dataset D and a pattern m, by m(D) we denote the set of transac-
tions containing the pattern, i.e. 7(D) = {(x,y) | 7(x) =1, (x,y) € D}.

A pattern mining algorithm is an algorithm that enumerates all patterns
satisfying certain constraints within a certain pattern language £. The most
popular constraint is the minimum support constraint. The support of a
pattern is the number of elements in a data set that includes the pattern,
i.e., if 7 is a pattern, its support is |7 (D)|. A pattern is frequent for minimum
support threshold 8 iff |7 (D)| > 0. Examples of pattern languages are itemsets
(£ = 27) and graphs (£ = {G | G is a graph}).

If we associate to a pattern a class label ¢ € C we obtain a class association
rule 7 = ¢. The support of a class association rule is defined as

{(x,y) € D 7(x) = 1}

To find all patterns satisfying a constraint ¢ in a space of patterns P,
algorithms have been developed which traverse the search space in an effi-
cient way. Despite the large diversity in methods that exist for many pattern
domains, they have certain properties in common.

First, they all assume that there is a generality order 2 between the pat-
terns. This order satisfies the property that
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Vx:mi(x) =1Am CEm — m(x) = 1.

In other words, if a pattern is included in an element of the data set, all its
generalizations are also included in it.
Consequently, for the minimum support constraint we have that

|7T1(’D)‘ >0ANT Cm = ‘WQ(D” >0

for any possible dataset. Any constraint which has a similar property is called
anti-monotonic. While anti-monotonic constraints were the first ones used
and exploited for efficient mining, current pattern mining algorithms exist
also for non-monotonic constraints such as average value of items in a set or
minimum x2-score.

All descendants of a pattern in the pattern generality order are called its
refinements or specializations. Pattern mining algorithms search for patterns
by repeatedly and exhaustively refining them, starting from the most general
one(s). Refinements are not generated for patterns that do not satisfy the
anti-monotonic constraint. By doing so some patterns are never generated;
these patterns are pruned.

In the case of itemsets, the subset relation is a suitable generality order.
Assuming itemsets are sets I C {1,...,n}, the children of an itemset I can
be generated by adding an element 1 < i < n to I, creating sets I U {i}. For
the subset partial order it holds that

I C LI = |IL(D)| > |I2(D)].

Frequent itemset mining algorithms traverse the generality order either
breadth-first (like APRIORI [AMS196]) or depth-first (like EcLAT [ZPOL97]
and FP-GrRowTH [HPY00]). When it is found for an itemset I that |I(D)| <
0, the children of I are not generated as all supersets can only be infrequent
too.

Similar observations can be exploited for graphs, where usually the subset
relation is replaced with the subgraph isomorphism relation.

Frequent pattern mining algorithms for many types of datastructures exist,
among which sequences, trees, and relational queries; essential in all these
algorithms is that they traverse the pattern space in such a way that the
generality order is respected.

We will see in the next section how we can search for patterns under other
types of constraints.

In this paper, we will often be using a set of patterns P = {my,...,m,} to
create a new binary dataset from a dataset D = {(x,y)}:

{(Z)lz’y) = (7T1(X), e 'ﬂ—n(x)7y) | (X7y) € D}

In this new dataset, every attribute corresponds to a pattern; an attribute
has value 1 if the element of the data set includes the pattern.
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3 Correlated Patterns

In traditional frequent pattern mining the class labels, if present, are ig-
nored. We will refer to a pattern mining technique which takes the class
labels into account as a correlated pattern mining technique, but many al-
ternative names have also been proposed, among others emerging pattern
mining [DL99], contrast pattern mining [BP99] and discriminative pattern
mining [CYHHO07, CYHYO08] and as subgroup discovery in the first paper in
[Wro97]. We will use the notation we proposed in [NK05].

In statistics, correlation describes a linear dependency between two vari-
ables; in our case the class value and the occurrence of a pattern. While in
theory more than two possible class values could be handeled, we will restrict
ourselves to the binary setting. The aim of correlated pattern mining is to
extract patterns 7 from a data set whose occurrences are significantly corre-
lated with the class value y. The main motivation for this approach is that
patterns which do not have significant correlation with the target attribute,
are not likely to be useful as features for classifiers.

Correlated pattern mining techniques use correlation scores that are com-
puted from contingency tables. Every transaction is either covered by a pat-
tern or not; furthermore, the transaction is either positive or negative. This
gives us four disjunct possibilities for each transaction, which can be de-
noted in a 2 x 2 contingency table such as Table 2. Statistical measures are
employed to calculate a correlation score between the class value and the
pattern at hand from the number of transactions for each of the four possi-
bilities. Correlated pattern mining aims for the extraction of patterns that

Table 2 Example of a contingency table.

Covered by pattern Not covered by pattern

Positive example p = |n(D1)] P—p=|D\ n(DT)| P
Negative example n=|r(D7)| N —n=|D\w(D7)| N
p+n P+N-p—n N+ P

have a high correlation with the target attribute. There are two settings that
have been considered:

e find all patterns that reach at least a user-defined score;
e find the k£ patterns scoring best on the given data set.

We will first provide on how to compute patterns in these settings, before
discussing the advantages and disadvantages.
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3.1 Upper Bound

Obviously it is not efficient to enumerate all possible patterns to find the
desired subset. As noted before, the property allowing for an efficient enu-
meration of all frequent patterns is the anti-monotonicity of the frequency
constraint. In correlated pattern mining, we would like to exploit a similar
anti-monotonic constraint. Unfortunately, interesting correlation scores are
usually not anti-monotonic. A correlation score should at least have the fol-
lowing properties:

(A) a pattern which covers negative and positive elements of the data set in
equal proportion as occurs in the full data should not be considered a
correlated pattern;

(B) a pattern which covers many elements of one class, and none of the other,
should be considered correlated.

As a pattern of type (B) can be a refinement of a pattern of type (A) useful
correlation measures cannot be anti-monotonic. Hence,

7w C 7’ # score(m) > score(r’)

The main approaches proposed to solve this problem involve introducing an
upper bound. An upper bound is an anti-monotonic measure which bounds
the correlation values that refinements of a pattern can reach. Hence, an
upper bound allows for an efficient search;

7 C 7" = bound(m) > bound(w") with bound(m) > score(r’)

The bound allows us to find all correlated patterns exceeding a mini-
mum correlation score in a similar way as we can find frequent patterns; i.e.
branches of the search tree are pruned using the anti-monotonic bound con-
straint, instead of the minimum support constraint. In contrast to frequent
pattern mining, not all patterns that exceed the score are output. Only pat-
terns that exceed the threshold on the original score function are part of the
result.

3.2 Top-k Correlated Pattern Mining

In order to search for the top-k patterns, a naive approach would be to simply
select these patterns in a post-processing step for a given (low) threshold.
However, an important question is if we can find the top-k patterns more
efficiently if we search for top-k patterns during the mining step.

It turns out that the bounds discussed in the previous section can be used
relatively easily to find the top-k patterns. The main idea is to update the
correlation treshold # during the search starting from the lowest possible
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threshold. A temporary list of the top-k patterns is maintained during the
search. Every time a enumerated pattern m exceeds the score of the worst
scoring pattern in the top-k list, this newly found pattern 7 is inserted into
the list, which is cropped to the current top-k patterns found. As long as the
length of the list is still below the desired k, patterns are simply added. Once
the list reaches the desired size of k patterns the threshold used for pruning is
always updated to the score of the worst pattern in the list. This threshold is
used as a constraint on the bound value of patterns. Thus, while the mining
process goes on, the pruning-threshold continues to rise and consequently
improves the pruning-power. The final list contains the top-k patterns.!

Note that due to the changing threshold the search strategy can influence
the enumerated candidates in the top-k setting. This has been investigated
and exploited in e.g. [BZRNOG].

Both constraints — the top-k and the minimum score — can be combined
by setting the initial threshold to a user defined threshold. As a result, the
patterns extracted will be the k best scoring patterns exceeding the initial
user-defined threshold.

3.3 Correlation Measures

As said before, in correlated pattern mining we need a non-trivial upper
bound to allow for pruning?. This upper bound should be as tight as possible
to achieve the maximum amount of pruning.

In this chapter, we will use the PN-space based methodology of [NK05] to
introduce the bounds. The use of bounds in a correlated pattern mining set-
ting was first proposed in [BP99]; however, we present the bounds introduced
in [MSO00] as they are more tight.

As stated earlier, instances in the data set are associated with class labels.
We consider a binary class setting with positive labeled instances D+ and
negative labeled instances D~ such that DT UD~ = D while D+ and D~ are
disjunct.

Any pattern 7 covers p = |m(D7V)| of the positive instances and n =
|m(D7)| of the negative instances and can be represented as point in a pn-
space, as illustrated in Figure 2. Accordingly the total frequency of the pat-
tern 7 is |7(D)| = |7(D1)|+|7(D~)|. The upper bound has to be defined such
that for any specialisation 7’ J 7 the inequality boundp(m) > scorep(n’)
holds, and the bound is anti-monotonic. Due to the anti-monotonicity any
specialisation 7’ J 7 can only cover a subset of 7 such that /(D) C n(D™)
and 7/(D~) C w(D7). Therefore any 7’ can only reach values located in the
grey area defined by 7 (Figure 2). As a result we need to define the upper

I The list can be shorter if there were less than k patterns exceeding the lowest threshold.

2 There is always a trivial upper bound that does not allow for any pruning and thus is
worthless
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bound to be greater or equal to the maximum score over all p’ < p = |r(D1)|
and n' <n=|7(D7)|,

boundp(p,n) > max scorep(p’,n’)
p'<p,n’'<n

If the correlation measure is conver, the calculation of the upper bound is
straightforward. Convex functions are known to reach their extreme values
at the borders. Thus, only the scores of these borders have to be computed -
the maximum of which specifies the upper bound.

Morishita and Sese [MSO00] introduce the general idea and discuss two
popular and frequently used convex functions, x? and information gain (IG).
While in these cases convexity is exploited, in general, any function that
allows for an efficient calculation of an upper bound in a restricted domain
can be used to guide the search [Bri09]. One example is the non-convex
Hellinger distance. As it still reaches its extrema at the borders, the upper
bound can be calculated in the very same way as for 2 or Information Gain.

Next to the technique introduced above, other methods to extract corre-
lated patterns based on ‘pure’ frequent-pattern mining have been proposed.
[NKO05] shows that separate mining on each class with a threshold derived
from the desired minimum correlation and post-processing can be done effi-
ciently to obtain the desired result. Alternatively, given a threshold on cor-
relation, the minimum of the class-specific support thresholds can be used as
a support threshold on the entire dataset. This approach was essentially pro-
posed in [CYHHO7, CYHYO08]|; note however that this class-ignorant pruning
strategy is suboptimal compared to the approach which takes class labels
into account.

3.4 Type I Errors

All methods discussed evaluate a correlation score for every pattern. For
instance, we used x? to evaluate how much each pattern correlates with a
class attribute. In statistics a common recommendation is that if the x? value
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exceeds 3.84, the correlation is significant. Does this mean that it is always
correct to use 3.84 as threshold?

Unfortunately, this is not the case. In statistics it is well-known that if
we repeatedly evaluate a significance test, chances are very high that we will
incorrectly reject the null hypotheses in some of these tests. This kind of error
is called a type I error. Given the large number of patterns considered, type
I errors are very likely in pattern mining. How to deal with them is an issue,
which has not received much attention.

A common way to deal with type I errors is the direct adjustment approach,
which modifies the minimum correlation score depending on the number of
hypotheses evaluated: the more hypotheses considered, the higher the corre-
lation threshold should be.

In bound-based pattern mining, it is however not clear how this method
should be applied correctly. Intuitively, one would say that the choice of
threshold should be independent from the algorithm used, and hence, inde-
pendent from the number of patterns enumerated by the search process of
the algorithm. However, normalizing by the total size of the search space is
not always an option, as some pattern domains (such as graphs) are infinitely
large.

Given these problems, until now most direct adjustment approaches take
a practical approach. In [BP99] the score of a pattern is normalized by the
number of frequent patterns of the same size; [Web08] presents an attempt
to make this approach more correct by including the total size of the search
space; this approach is only applicable on itemset domains however.

An alternative approach is the holdout approach. In this case, the dataset
is split in two parts. A large set of patterns is first mined in the first part;
this set of patterns is evaluated in the second part to determine which are
relevant. The advantage is that it is justified in this case to normalize the cor-
relation threshold by the number of patterns returned in the first phase. The
approach, however, is not applicable in direct top-k pattern mining [Web08].

3.5 Closed and Free Pattern Mining

Pattern sets can often be redundant (see Section 4). One such redundancy is
caused by considering patterns that are neither closed nor free. The principles
of closedness and freeness were originally proposed for unlabeled data sets, in
which case a pattern 7 was called closed iff there was no pattern 7’ 3 7w such
that (D) = #'(D); a pattern was called free iff there was no pattern 7’ C 7
such that (D) = 7'(D). Restricting the set of patterns to closed or free
ones can often already reduce the number of patterns under consideration
significantly and is hence one of the most common approaches to restricting
the initial set of patterns.
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The extension of this principle to labeled data is possible in multiple ways.
The most straightforward approach is to ignore the class labels. However,
assume we have two patterns with these properties:

[7(D)| = |="(DV)], |=(D7)| < |'(D7)| and |x(D7)|/|D~| < |=(DF)|/ID"],

where the last condition states that 7 is more correlated with the positive
class than with the negative, then any sensible correlation score would de-
termine that 7’ is less correlated. This shows that one can also consider a
pattern uninteresting if it is closed or free on only one of the two classes.
An approach for finding closed patterns, given support thresholds for two
classes, was studied in [GKL06]. An alternative approach is to perform top-k
free pattern mining [BZRNO06], essentially by not inserting patterns in the
queue of the search procedure which are not free compared to the patterns
already in the queue.

4 Finding Pattern Sets

The preceding section did not only cover top k-correlated pattern mining,
but also algorithms to derive all correlated patterns. As we have argued in
the introduction, in classifier building an optional second step is often useful
in which a set of patterns is filtered. The main goals of this filtering are to
remove redundancy, and to bring the potentially large amount of patterns
down to a reasonable number. Achieving these goals will benefit both ma-
chine learning techniques that use the patterns either directly or indirectly
(through data propositionalization) and human users that want to inspect
the patterns or the models created from said patterns. For machine learn-
ing techniques, a large amount of redundant features means that selecting
the relevant features in the process of building a model becomes harder, not
to mention the increased computational complexity that goes with it. For
humans there is simply the question of human perception — no one can be
expected to make sense of hundreds or even thousands of patterns, especially
if some of them are largely redundant. In this section we focus on stand-
alone techniques that have been proposed for selecting patterns from a set.
Techniques which directly use patterns as rules in classifiers are discussed in
Section 5.

4.1 Constrained Pattern Set Mining

There is actually a straightforward way of selecting subsets of (potentially
correlating) patterns from an existing large set of mined patterns: search for
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subsets under constraints as done in pattern mining algorithms. In the same
way as itemsets can be enumerated in a principled way, pattern sets can be
assembled. Of these sets, only those are kept that satisfy certain properties,
e.g. regarding the redundancy among patterns in the set, the size of the
pattern set, or in- or exclusion of particular patterns.

This idea was formalized and the framework and preliminary results were
published in [RZ07]. The main insight lies in the fact that the problem of
pattern set mining is dual to the problem of pattern mining: while all items
of an itemset have to occur in an element of the data set to match, for pat-
tern sets the most intuitive interpretation is to match an element of the data
set if any member pattern of the pattern set occurs in the element. This
duality leads to an exact reversal of the direction of the (anti-)monotonicity
property, which means that the pruning strategies behind the pattern min-
ing algorithms can also be applied in pattern set mining. For instance, the
maximum frequency constraint (which is monotonic in itemset mining), is
anti-monotonic in pattern set mining, and can be used to prune the search
space when growing pattern sets. Useful constraints for pattern set mining
were defined, such as pairwise redundancy constraints, which allow the user
to effectively control the level of redundancy that holds in the data set and
together with size constraints allows the selection of compact, informative
pattern subsets. These constraints also fulfill the anti-monotonicity property.
Finally, the dual nature of the problem allows for the lower bounding of inter-
estingness measures such as x? and the effective upper bounding of accuracy,
something that is not possible with individual patterns.

The experimental results reported in [RZ07] show the effectiveness of the
approach, demonstrated in pattern selection for classifier building, but also
the limitations in that pattern set mining faces quite a few of the challenges
that local pattern mining encounters. Specifically, depending on the selec-
tiveness of the constraints, many pattern sets satisfy them and enumerating
them can quickly exhaust computational resources, given the large amount
of patterns forming the basic elements of the language. These observations
point towards two promising avenues: 1) it is often not necessary to return all
pattern sets, a view corresponding to top-k mining for local patterns. Also,
2) the set returned does not have to be the optimal one if optimality can
be traded off against efficiency in a reasonable manner. The following two
approaches follow these directions.

4.2 The Chosen Few

The method we introduced in [BZ09] focusses on optimizing a single pattern
set heuristically. The main point of this work is that if two pattern sets par-
tition the data in the same manner, the smaller one of those is considered
preferable, carrying the same information as the larger one while being easier
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to peruse by humans and easier to process by machine learning techniques.
Given a set of patterns, instances from which they have been mined can be
described in terms of the patterns in the set that are present in the instance
and in terms of those are absent. Instances agreeing on all patterns’ presence
form an equivalence class or block; the set of all blocks makes up the parti-
tion on the data. In terms of machine learning techniques, for instance, all
instances from a particular block appear equal to the algorithm since they
are encoded in an indistinguishable manner.

Given a set of patterns, and the partition it induces, adding a new pattern
to the set can either increase the number of blocks or leave it unchanged. In
the latter case, this pattern is clearly redundant, since it can be expressed
either by another pattern, by its complement, or by a combination of pat-
terns. In processing the full result set of a local pattern mining operation,
it can hence be useful to reject patterns that do not change the partition,
whittling the pattern set down to a smaller number of patterns carrying the
same amount of information. While it could be argued that there is infor-
mation which is not recovered by the partition alone, this is not true for
all machine learning techniques; in principle, if this is useful, many machine
learning techiques could deduce one feature from the others. While the mini-
mal number of patterns needed is logarithmic in the number of blocks in the
partition, typically more patterns are actually needed. Deciding on the mini-
mal set of patterns needed to induce the same partition as the original result
set is computationally rather expensive, however, setting the stage for the
application of heuristic techniques, for which we developed two alternative
approaches.

The first of the two algorithms, BOUNCER, uses a user-defined order and
considers each pattern exactly once for potential inclusion. This order is aug-
mented by a measure which evaluates the contribution of a pattern in terms
of the granularity of the partition. Using a threshold on the minimal contri-
bution a pattern has to make, the first pattern encountered that exceeds this
threshold is added to the set, before patterns that appear later in the order
are evaluated further. The combination of the order, the selection of the first
pattern for inclusion and the, necessarily, local quality measures allows the
efficient mining of locally optimal pattern sets. Notwithstanding their local
optimality, the resulting pattern sets were shown to improve on the set of all
patterns in terms of utility as features for classification. The size and quality
of the pattern sets is strongly influenced by the order and the measure used,
however.

Heuristically optimizing a pattern set will of course have drawbacks that
balance the faster execution. Consider the example in Table 3: ggf? has an joint
entropy of 1, the highest entropy for a single pattern, and would therefore be
chosen first. The joint entropy of the set {gffy, S, By} is 2.72193, however,
the highest possible with three patterns, and this does not include the highest-
scoring individual pattern at all.
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Table 3 A data set of 10 elements with the coverage of four different patterns.

While the adoption of a global optimality criterion would prove to be im-
possible for non-exhaustive search, the heuristic nature of BOUNCER can be
improved by changing the used order and the selection of the pattern used for
inclusion. This is implemented in the PICKER* algorithm, in which an upper
bound on the contribution of individual patterns to the set is calculated and
the patterns ordered in descending value of this upper bound. By travers-
ing and evaluating patterns until none of the remaining upper bound values
exceeds the contribution of the currently best pattern anymore, a closer ap-
proximation of global optimality can be expected. Recalculating the upper
bounds and reordering the patterns potentially leads to several evaluations of
each individual pattern, as opposed to BOUNCER’s approach. The resulting
pattern sets do not show the fluctuation in cardinality that different orders
caused and in most cases improve on the quality of pattern sets mined by
using a user-defined order. Both techniques are able to handle a far larger
amount of patterns than the complete method introduced in the preceding
section.

4.3 Turning Pattern Sets Maximally Informative by
Post-Processing

While the approaches in the previous section greedily compute a set of pat-
terns aimed to be diverse, no global optimization criterion is used to measure
this diversity. In [KH06a, KHO6b, BYT*08] measures were studied which can
be used to measure diversity of a set of patterns. Nevertheless, the BOUNCER
algorithm is related to algorithms which optimize under such global measures.

We can distinguish two types of measures. First, there are measures that
do not take into account the class labels, such as joint entropy [KHO06a]. By
picking a set of patterns P we can construct a new representation for the
original data, in which for every element (x,y) we have a new binary feature
vector zZ (see Section 2). Ideally, in this new representation we can still
distinguish two different elements from each other by having different feature
vectors. However, in case this is not possible, one may prefer a set of patterns
in which any two elements are not likely to have the same feature vector. One
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way to measure this is by using joint entropy,

H(P)= Y —p(b)logp(b),
be{0,1}IPI

where
p(b) = [{(x,y)|zx =b}|/|D|.

Hence p(b) denotes the fraction of elements of the data set that have a certain
feature vector b once we have chosen a set of patterns P, and we consider such
fractions for all possible feature vectors. Joint entropy has desirable properties
for measuring diversity: the larger the number of vectors b occurring in the
data, and the more balanced they occur, the higher the entropy value is.
When the entropy is maximized, the patterns are chosen such that elements
of the data set are maximally distinguishable from each other.

Another class of measures are the supervised measures. An example of
such a measure is [BYTT08]:

Q(P) = {(x,x)|(x,y) € D", (x',y) € D™ : 2, =z }|.

This measure calculates the number of pairs of elements in different classes
that have the same feature vector when patterns in P are used to build feature
vectors.

A set of k patterns that maximizes a global measure is called a maxi-
mal informative k-pattern set. To compute such a pattern set, two kinds of
approaches have been studied:

e complete approaches [KHO06a], which enumerate the space of subsets up
to size k, possibly pruning some branches if a bound allows to decide that
no solutions can be found. Such an algorithm would be capable of finding
the set {gflg, Tm, By} from Example 3.

e a greedy approach, which iteratively adds the pattern that improves the
criterion most, and stops when the desired pattern set size is reached
[KHO6a, BYT08].

The first approach is very similar to the pattern set mining approach of
Section 4, while the second approach is similar to the approach of Section 4.2.
Indeed, one can show that the pattern that is added to a pattern set in each
iteration by the PICKER* algorithm is within bounded distance from the
pattern chosen by an entropy measure when using difference in entropy as
distance measure.

One could wonder how well some of these greedy algorithms are perform-
ing: how close to the optimum do they get? In this regard, an interesting
property of some optimization criteria is submodularity. A criterion F'(P) is
submodular iff for all P’ C P and patterns 7 it holds that

F(P'U{r}) - F(P) > F(PU{r}) - F(P),
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in other words: there are diminished returns when a pattern is inserted later
in a set. For a submodular criterion, it can be shown that the greedy algo-
rithm (operating similar to BOUNCER) is approximates the true optimum:
let P,y,+ be the optimal pattern set of size k, then the greedy algorithm will
find a set for which F(P) > (1 — 1)F(Pyy) = 0.63F(Pyy) [NWF78]. Both
Q(P) and H(P) are submodular, and hence the greedy algorithm achieves
provably good results. Finally, as BOUNCER approximates the choices made
by a greedy algorithm that uses entropy as an optimization criterion, also
BOUNCER is guaranteed to approximate a global optimum under the joint
entropy criterion.

5 Direct Predictions from Patterns

Most of the methods discussed in the previous section can be seen as feature
selection methods. They ignore the fact that features are actually patterns,
and do not construct classifiers. In this section, we study techniques that
construct a classifier while taking into account that the used components are
in fact patterns. These algorithms are rule-based, combining rules of the form
pattern = class-label.

The technique of associative classification was first proposed in the work
introducing the CBA algorithm [LHM98] in 1998, quickly followed by the
CMAR [LHPO1] approach in 2001 that extended both the pattern selection
step and the actual classification model of CBA (and arguably improved on
them). We will therefore discuss these approaches first.

A potential limitation of both of these approaches was however that they
were centered on the classical minimum-support, minimum-confidence frame-
work. In recent years, a consensus has developed that these patterns are
not necessarily best suited to the task of classification. We developed a new
method, called CTC [ZB05], which uses other measures as a starting point.
We will discuss it in the third part of this section and elaborate on the dif-
ferences.

5.1 CBA

As mentioned above, CBA was the first algorithm to use the minimum-
support, minimum-confidence association rule framework for constructing
classifiers, coining the term associative classification. The main difference to
traditional rule-based machine learning approaches lies in that first a large
set of reasonably accurate rules are mined from the data, and in a second
step a subset of those is selected that forms the final classifier. The mining
step itself is performed using the well-known APRIORI algorithm.
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In CBA, patterns are used to build class association rules m = ¢,
and patterns m need to satisfy a minimum relative support constraint
support,,(r = ¢) = % > 0 and a minimum confidence constraint

confidence(m = ¢) = ‘r;((DDC))ll >0..

The resulting set of all class association rules (CARs) that satisfy the
constraints, which we will refer to as S, is then ordered according to a <cpa
relation. Given two CARs cary : m = ¢1, cars : ma = s, the relation <cpa
between those two rules is

1. Let w.l.o.g. confidence(car1) > confidence(cars) then cary <cpa cars
2. If confidence(cary) = confidence(cars), let w.l.o.g.
support ., (cary) > support,,;(cars) then cary <cpa cars

3. If confidence(cary = confidence(cars), and support,.;(cari) = support,.;(cars),

let w.l.o.g. |m1| < || then cary <cpa cars

The last check holds since both 7y and 7y are simply sets of items whose
cardinality can be measured. If even the last check fails, the tie is broken arbi-
trarily. The order used by CBA can thus be summarized as “higher confidence
is preferable”, “in case of equal confidence, higher support is preferable”, and
“all things being equal, shorter patterns are preferable”.

Using this order, S is turned into an ordered set. Starting from the minimal
rule according to this order, rather similar to the kind of pattern selection
encountered in Section 4.2, S is traversed and each rule in turn considered
for inclusion in the final classifier. For each rule, all elements in the data set
it matches are collected, and it is evaluated whether the rule predicts at least
one of those elements’ class label correctly. If it does, it is included in the final
classifier and all covered elements are discarded; if not, the rule is discarded.
For classifying an unlabeled element, the minimal rule according to <¢pa is
used to predict its class label.

Table 4 CBA/CMAR illustrative example

Elements m “ E IEH BEH BEH

T I O™
™ B BB B B B
73 p F

To illustrate this, consider the small example in Table 4: mm = Dark
predicts the dark class with a confidence of 1.0 and is therefore ranked first.
B = Dark and §® = Light have the same confidence (0.66) albeit for different
classes, and since ['s support is higher, it is ranked before f".

CBA will select mm as the highest-ranked pattern and remove the ele-
ments of the data set it covers (™4 and jggll) from future consideration. The
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second pattern [ still covers and correctly predicts elements of the data set
and thus gets selected, removing all elements it covers, i.e. all remaining el-
ements. Since this leaves no elements that P could predict correctly, it is
discarded. This also illustrates one of the weaknesses of the CBA approach:
after removing 4 and galll, B in fact shows a confidence of 0.5 on the remain-
ing elements and F® should be selected instead of it. Since CBA estimates
support and confidence only once — on the training data — however, it makes
a sub-optimal decision.

The usual setting for the support threshold 65 is 0.01, and for the mini-
mum confidence 6. 0.5. While the second threshold can be justified as only
accepting rules that predict their class label more often than not, the first
threshold is somewhat arbitrary (and has been shown empirically not to give
the best results) [CLO5]. It also has to be pointed out that the selection and
classification techniques are rather ad hoc, one-shot techniques. On the other
hand, the resulting classifier uses an easily interpretable model — a list of rules
ordered according to easily understandable criteria: high confidence charac-
terizes rules that are usually correct in their prediction, high support means
that they can be expected not to describe spurious phenomena, and short
rules adhere to the principle of Occam’s razor.

5.2 CMAR

CMAR [LHPO1] attempted to improve especially on CBA’s ad hoc aspects,
as well as somewhat on assembling the set of rules who are considered for
inclusion in the classifier in the first place. The mining of CARs is performed
essentially in the same way. Rules are also ordered according to <cpa, but
since confidence alone can be a misleading quality measure for rules, CMAR
uses the x? statistic to discard rules that do not correlate positively. To
give an intuition what this means, consider [ from Table 4 which covers all
elements. While this pattern satisfies the minimum confidence constraint, its
x2-score is 0, denoting that there is actually no correlation with the target
class.

The same database coverage approach that was used in CBA is also used
in CMAR. There is a notable difference however: instead of removing an
element once it is covered by a single rule that was included in the final
classifier, there has to be more than one such rule. This would be expected
to make classification of unseen elements of the data set more reliable since
not only one rule would match it. It is suggested in [LHPO1] that four rules
have to cover an element before it is removed from the data set — there is
however no discussion of why this would be a suitable threshold value.

Let us revisit the CBA example (Table 4). If the database coverage thresh-
old is set to 2 then selecting mm does not lead to the exclusion of fF. More
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important, however, is that, as mentioned above, [l would be discarded before
the database coverage pruning even commences.

The second difference lies in the actual classification process. Instead of
using the minimal rule according to <cpa, the order is discarded, and for
each unseen element all the rules are collected that cover it, which should
lead to the more reliable classification mentioned above. Additionally, if rules
disagree on the class label to be assigned, the impact that each particular rule
has on the final decision is based on the rule’s quality, measured by trading off
its actual x2 value against the “maximal” one it could have attained. This
weighted voting strategy is however once again chosen ad hoc — based on
empirical performance as the authors admit. So for the sake of classification
robustness, CMAR replaces CBA’s model with a more complex one, albeit
still based on confident, frequent rules. The threshold values used for mining
are the same as in CBA and also the same for all rules mined.

5.3 CtC

Considering the order that is imposed on patterns (rules) in both the CBA
and CMAR techniques, a notion of importance or desirability emerges: high
confidence is valued, leading to rules that are probably useful for classifica-
tion, but so is large support, leading to rules that can be expected to hold
not only on the training data.

Also, as seen in the case of the CM AR approach, a pattern having (rela-
tively) high confidence in connection with a class label does not necessarily
correlate positively with the class, if said class label is rather frequent in the
first place. Similarly, a frequent rule does not automatically translate into
a significant one, especially if the class predicted is the majority class. In
CMAR, found rules were subjected to evaluation by the x? statistic and
only those accepted that correlated positively.

The y2-statistic trades off support against confidence, so to speak, valu-
ing less confident rules highly, if they have only enough support, combining
in this way the two criteria of importance expressed in the order used by
CBA. An interesting question arising at this point is “Why use minimum-
support, minimum-confidence rules at all?”, especially if they are not used in
a winner-takes-all way, as in CBA, but by weighted voting. Using the princi-
ples explained in Section 3 it is easily possible to directly mine strongly class-
correlating predictive patterns, without the detour of mining (and pruning)
frequent patterns and assessing their significance after enumerating them.
The CTC [ZB05] — correlating tree patterns for classification — approach
does just that, using the pattern language of labeled rooted trees?, mining

3 The extension to other pattern domains is straightforward.
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x2-quantified patterns instead of ad hoc decided-upon support and confidence
thresholds.

There are several important differences between CBA and CMAR on the
one hand, and CTC on the other hand.

In CBA and CMAR, first all rules are mined that satisfy certain minimum
thresholds, and then the database coverage step is used to select patterns.
CTC combines these two steps. To achieve this, an order similar to <gp4 is
used, with a slight change in significance measure:

1. Let w.Lo.g. x3 ([m1(DH)], |71 (D)) > 1 (|72 (D), [m2(D-)]) then 11 <ore
2

2. If X3 (Im (D) [m(D7))) = xp(Im2(DF)], [m2(D7)]), let wlog. |m| <
|7T2| then m <cio ™2

Support has been replaced by x? as a significance measure and confidence
is not referenced at all anymore. For a two-class problem, obviously if w.l.o.g.
|m(DF)| > |m(D7)| then necessarily confidence(r = +) > 0.5, and the
strength of prediction is traded off against coverage of the pattern in the
significance measure already.

Folding the two criteria into a single one has an interesting side-effect. The
choices for the support threshold 65 and the confidence threshold 6. interact
to have an effect on the number of rules mined. Increasing the minimum
support but lowering the minimum confidence can lead to more rules, for
example. It is not clear, however, how many rules will be mined, which gets
exacerbated by the use of the data set coverage threshold in CMAR. Using
X2, on the other hand, allows to make this explicit — CTC takes a single
parameter with a clear meaning, k, the number of rules, instead of two or
three more opaque ones.

CTC uses the principles described in Section 3 to compute the top—k
patterns in this order, for example the 1000 highest-scoring patterns. Hence,
the selection is not performed after but during mining. This set is used
directly for classification, without further pattern selection.

This has two advantages:

1. Far fewer rules are mined. In fact, most frequent, confident rules do not
turn out to be significant.

2. A less complex voting scheme is necessary. CMAR’s voting approach is
outperformed by the comparably simple average strength, i.e. confidences
for each class are added up, and a simple majority vote, i.e. each rule
predicts its majority class.

In other words, compared to CBA and CM AR, both the heuristic pruning
scheme and the ad hoc (or empirically found) classification technique are
replaced by more straight-forward and arguably better-founded solutions.
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6 Integrated Pattern Mining

A common feature of the approaches discussed till now is that they assume
that a set of patterns is computed once, either based on a threshold, or on
the size of the resulting pattern set, such as in top-k mining. There is no
strong interaction between which patterns are mined and how the model
is constructed afterwards. The alternative is to perform integrated pattern
mining, i.e. patterns are mined, potentially refined or re-mined, while the
classifier or pattern set is constructed, interleaving the mining and the model
formation step, without creating an initial pattern set first.

In this section, we will first describe two updates of techniques discussed in
the previous section to perform integrated mining; subsequently, we discuss
techniques for building one particular type of model, i.e. a decision tree, using
integrated mining techniques.

6.1 F1ITCARE

Until now we mostly illustrated methods on binary prediction problems.
Good performance on binary problems does not always imply a good perfor-
mance on multi-class problems however. Turning multi-class problems into
binary ones usually strongly increases the computational resources needed.
Either a number of 1-vs-all settings has to be addressed that is equal to the
number of classes in the data, or an even greater amount of 7-vs-1 settings.
The FITCARE algorithm, on the other hand, was developed specifically for
good performance on multi-class problems.

We observed in Section 5 that high confidence is not necessarily a good
measure for class correlation if the class is a majority class in the first place.
The FITCARE algorithm [CGSBO08] takes this one step further. It extends
the observation that CAR-miners usually focus on one-against-all settings,
i.e. the confidence of a rule has to be higher w.r.t. the target class than
w.r.t. the union of all other classes where it applies, towards the problem
of badly skewed data sets. In such data sets, high-confidence, high-support
rules will be rules correctly classifying the majority class — yet still covering
and effectively misclassifying instances from minority classes. Instead of the
usual global minimum frequency and confidence thresholds, a new definition
of interesting CARs is proposed based on a distinct support threshold for
every class. Given this vector of thresholds (6s,,...,05. ), a CAR m = c is
interesting if

|7 (D)

2. Vc’#c:%<9d

3. VrCn' 3 #c: ‘WI(DDJI)‘ >0
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The advantage of this technique lies in the fact that the vector of thresholds
allows for far better fine-tuning of the differentiating power of a CAR between
any two classes, finer than emerging patterns or class-correlating patterns
can. The drawback is however, that for any given class y;, |C| parameters
have to be adjusted — the minimum threshold on the class itself and the
|C| — 1 maximum thresholds for the other classes. These O(|C|?) parameters
make up the threshold matrix I" whose entries have to be estimated, making
the process more expensive than the approaches we have seen so far. This is
however traded off against having to break multi-class problems down into
several binary problems, as explained above. Using several constraints and a
hill-climbing approach, in which pattern mining is repeated, it is possible to
estimate these values efficiently. The final matrix is used to extract a set of
CARs for each target class in turn. The resulting CARs are

1. highly discriminative between classes, therefore making strongly conflict-
ing predictions unlikely, and

2. highly probable to cover all instances of each target class, thus making
default classifications less common.

The resulting rules are once again combined using a rather complex weighted
voting scheme that takes into account the reliability of rules when it comes to
their contribution to the final prediction. While this is a technique we have
seen both in CMAR and in CTC, the focus is now neither on fulfilling a
rule’s nor on its global confidence but rather on its relative support in the
target class. This should, given well-estimated parameters, lead to very small
contributions of rules in classes that are not their target class, even if they
have globally high support.

6.2 Mining Maximally Informative Pattern Sets
Darectly

In Section 4.3 we discussed methods for selecting a subset of k patterns that
maximize a global optimization criterion. In these methods it was assumed
that we start the search from a set of patterns. However, it is also possible
to find such sets without first having to mine an initial set of patterns.

The main trick is to change the greedy step in the greedy algorithm of
Section 4.3. Instead of iteratively picking from a pre-computed set the pattern
which maximizes the optimization criterion, we use branch-and-bound search
to determine the pattern that locally optimizes the measure. This branch and
bound search employs similar ideas as those used to find correlated patterns
(see Section 3).

We will illustrate this for the example of entropy. Assume we have a pattern
set with entropy H (P), then we are looking for the pattern m which maximizes
H(PU{r}), or equivalently, H(PU{n})—H(P). H(n|P) = H(PU{r})—H(P)
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is known as the conditional entropy of m given P, and can be written as

H(x|[P)= Y p(b)H(x|P =b)
be{0,1}IPI

where H(m|P =b) =} c01; —P(m = a|P = b)logp(r = a|P = b) and
p(m = a|P = b) denotes the fraction of elements of the data set characterized
by b also having 7(x) = a.

The challenge when searching for a pattern that maximizes this score is to
determine a bound on the scores of refinements of a pattern; such a bound
could allow us to prune parts of the search space that are not promising.

In the case of entropy, we can use the observation that overall entropy
is maximized when we maximize the entropy H(w|b) in each bin b. Given a
pattern 7, what is the highest entropy we can achieve in this bin for a pattern
7’ that is a refinement of 7? We can distinguish two cases.

e the pattern covers more than half of the elements in the bin b; then the
highest entropy we might obtain for this bin is obtained by covering half
of the elements. Hence, the highest entropy is 1.

e the pattern covers less than half of the elements, the best we can hope
for is not to lose any of these elements by refining the pattern. Hence, the
best we can hope to obtain is H(w|P = b).

Combining these observations we achieve the following bound on the quality
of any refinement 7’ of a pattern =

H(7'|P) < > p(b) + > p(b)H(r|P = D).
b {0,1}7! b e {0,1}/71
p(r =1|P=b) > 05 p(r =1|P =b) < 0.5

This bound can be used to prune unpromising branches of a pattern search
and makes it possible to find patterns directly without having to post-process
a pre-calculated set of patterns.

Combining this result with that of Section 4.3, it follows that we can find a
provably good maximally informative pattern set by a combination of branch
and bound search and a greedy algorithm.

Similar observations also apply to other measures; for instance, it was also
applied in [BYT"08] for the supervised Q(P) measure (see Section 4.3).

6.3 DLS8

One of the most popular predictive models is the decision tree. A decision tree
is a tree in which each internal node is labeled with a test on an attribute and
each leaf is labeled with a prediction [Mit97]. A prediction for a particular
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element (x,y) can be obtained by sorting it down the tree starting from the
root. The left-hand branch of a node is taken if the specified test on the
element of the data set is true; otherwise the right-hand branch is taken.
Note that if all attributes are binary, it suffices to label internal nodes with
attributes; an element of the data set will be sorted down the left-hand branch
of a node labeled with attribute ¢ if its value for x; is true; otherwise it is
sorted down the right-hand branch.

Many algorithms have been developed for learning decision trees from
training data. Most of these algorithms employ the principle of heuristic
top-down tree construction [Mit97, Qui93]: starting from an empty tree, it-
eratively a leaf of the tree is replaced with a test node. A test is chosen by
using a heuristic such as information gain. The advantage of this method
is that it is fast and usually obtains sufficiently good results. However, it
is not guaranteed to be optimal in many ways: given a bound on tree size,
the heuristic method may not find the tree that is either most accurate or
most cost-effective, in a setting of cost-based learning. In [NF07, NF10] an
algorithm, called DL8, was proposed that addresses the problem of finding
optimal decision trees by exploiting a connection between pattern sets and
decision trees.

The DLS8 algorithm is based on exploiting the relationships between paths
in decision trees and itemsets. To make this relationship clear we need to ex-
tend traditional itemsets to include negative items. Traditionally, an itemset
I C{1,...,n} occurs in an element x of length n iff for all j € I: x; = 1.
Assume now that I C {1,...,n,—1,...,—n}. Then we can define that an
itemset occurs in an element iff for all positive j € I: x; = 1 and for all
negative —j € I: x; = 0.

This extension allows us to represent every path in a decision tree as an
itemset. For example, consider the decision tree in Figure 3. We can deter-
mine the leaf to which an element belongs by checking which of the itemsets
{B}, {—B,C} and {—-B,—~C} matches. We denote the set of the itemsets
corresponding to the leaves of a tree T' with leaves(T'). Similarly, the itemsets
that correspond to paths in the tree are denoted with paths(T). In this case,
paths(T) = {0,{B}, {-B}, {-B, C},{—-B,~C}}. A further illustration of

Fig. 3 An example de-
0 cision tree corresponding
n to the three itemsets {B},
{-B,C}, {-B,-C}

1

the relation between itemsets and decision trees is given in Figure 4. In this
figure, every node represents an itemset; an edge denotes a subset relation.
Highlighted is one possible decision tree.
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Fig. 4 An itemset lattice for items {A,-A, B,-~B,C,~C}.

Given this correspondence, learning a decision tree can be seen as finding
a set of class association rules, where the rules should include both positive
and negative items and the set of rules should fulfill properties that ensure
that it can be represented as a tree.

In the basic setting, the DL8 algorithm can be seen as a post-processing
algorithm that can be applied on a lattice of itemsets. For the problem of
finding a tree T which minimizes error errors(T) on a set of examples T, the
main property that is exploited by the algorithm is that the error of a decision
tree equals the sum of the errors of the left-hand and right-hand subtree of
the root of this tree. Hence, we can solve the problem of finding an accurate
decision tree by independently and recursively searching the best left-hand
and right-hand subtrees of each possible root. By storing the best tree for
every itemset, we can avoid that we need to consider every itemset more than
once, and the computation is linear in the size of the itemset lattice.

In [NF07, NF10] several extensions are discussed of this general idea:

e the use of condensed representations to limit the number of itemsets that
need to be considered;

e how to deal with other constraints and optimisation criteria than minimum
support and error, for instance, cost-based constraints;

e how to integrate the decision tree construction with the pattern mining.

This last point is important, as by integrating the pattern mining in the tree
construction, a smaller number of patterns needs to be considered and less
information of the lattice needs to be stored. Overall, the integrated pattern
miner searches for patterns once, but does so as guided by the decision tree
construction procedure.



From Local Patterns to Classification Models 27

6.4 TREE?2

In the preceding discussion on DLS8, decision trees were described that it-
eratively split data on a binary attribute to build an effective classifier. If
data is described in terms of attribute values or binary attributes denoting,
for instance, an item’s presence or absence, this is a straightforward way of
building a decision tree. Once more complex data such as trees or graphs
needs to be analysed a simple split based on, for instance, the presence or
absence of an atom in a molecule will lead to unwieldy classifiers which are
unlikely to perform well.
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Fig. 5 A decision-tree to separate light and dark structures based on the shapes.

A possible alternative lies in mining a set of patterns, encoding data in
terms of their presence or absence and building the decision tree from this
re-encoded data. However, we would need to select a constraint under which
such patterns need to be mined. Instead of choosing this constraint ad-hoc,
we can also integrate the pattern mining step in the decision tree learning
algorithm, such that we directly mine for the pattern that the decision tree
learning algorithm would select as the best test in post-processing.

To illustrate this, consider the example in Figure 5: mining mm allows to
split the data set into two subsets which each consist 75% of one class, a
clear improvement over the original 50-50 split. On these subsets, two more
patterns can be mined, gf and BF, resulting in three pure leaves out of four
in total. Especially mining BF® on the full data would probably require very
lenient constraints since it matches only one of eight elements, leaving the
unmatched subset still very “impure”.

This is the approach taken in the TREE? algorithm [BZ05]. TREE? employs
top-1 mining to find the best class-correlating subtree in each iteration, splits
the data in covered and uncovered parts, and re-iterates pattern mining for
each of these two sets of data points recursively. In this way, ad-hoc thresholds
are avoided, and compact trees of truly meaningful patterns can be induced,
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improving on the post-processing method of building decision trees from a
set of pre-mined patterns.

7 Conclusions

In this chapter we provided an overview of methods we recently proposed
for using patterns in classification tasks. We showed that there exists a large
variety in methods, ranging from strict step-wise approaches to approaches
in which pattern mining and model construction is integrated. We put these
methods in context by providing extensive descriptions of related methods.

Despite the amount of work we reported on, this overview is far from
complete. Providing a detailed overview of all approaches for pattern-based
classification is beyond the scope of this chapter, and is left as future work.
Other possibilities for future work include a more detailed invesigation of the
merits of algorithms for pattern-based classification. We are not aware that
a systematic experimental comparison has been carried out for all pattern-
based classification methods. Finally, most methods until now concentrate on
rule-based classification. An interesting question is for instance how patterns
can be used in graphical models.
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