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Abstract In this chapter we describe the use of patterns in the analysis of su-
pervised data. We survey the different settings for finding patterns as
well as sets of patterns. The pattern mining settings are categorized
according to whether they include class labels as attributes in the data
or whether they partition the data based on these labels. The pattern
set mining settings are categorized along several dimensions, including
whether they perform iterative mining or post-processing, operate glob-
ally or locally, and whether they use patterns directly or indirectly for
prediction.
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Introduction

Although early constrained pattern mining in the form of frequent
itemset mining (FIM ) focused on an unsupervised setting, a natural ex-
tension is to apply these techniques in a supervised context as well. In
the supervised context, one attribute (or sometimes a small set of at-
tributes) is considered to be special, and we are only interested in finding
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relationships between this attribute and the other attributes. Whereas
this limits the patterns that will be found, it makes the analysis more tar-
geted and in many cases more useful. Consider for instance the context
of customer defection (churn), where one wishes to find relationships
between the loyalty of customers and other characteristics of the cus-
tomers; or consider applications in cheminformatics, where one wishes
to find relationships between molecular structures and their activity: in
all these cases, a targeted analysis with respect to the indicated target
attribute is likely to produce the most valuable results.

In this chapter, we will provide an overview of pattern mining tech-
niques that can be used in such a supervised context. The patterns
found by these techniques can often be interpreted as rules: the condi-
tions of the rule identify examples for which a certain property in the
target attribute holds. The techniques are hence related to Machine
Learning: many traditional Machine Learning algorithms are rule-based
as well. A natural question is how to link these two fields to each other,
in particular given that the focus of both areas is complementary: most
traditional machine learning techniques deal with the large search space
of potential rules by adopting heuristics; pattern mining methods, on the
other hand, offer more efficient methods for traversing a search space ex-
haustively, promising to find better rules than those found by traditional
rule learners. We will address this as well.

The earliest techniques that integrated both areas mirrored the FIM
techniques closely, using support and confidence to constrain itemsets
and rules, and support’s anti-monotonicity to prune the search space.
In addition to new challenges, supervised pattern mining also offers new
opportunities, however, since the supervision allows to use additional
quality measures and prune based on the properties of constraints based
on these measures. By now, the field has developed far from its origins,
encompassing other representations, incorporating approaches and qual-
ity measures developed in the context of Machine Learning, and paying
much attention to pattern set mining.

The latter topic is not limited to supervised pattern mining but is
of particular importance there: when constructing classifiers, rule lists
or sets, but also decision trees, or non-symbolic classifiers, redundancy
among or irrelevance of patterns is often detrimental to the classifier’s
performance.

We have given a unifying perspective on pattern-based classification
in the past [9] in which we focused on two dimensions. The first con-
cerned pattern set mining, specifically whether techniques performed
post-processing, selecting some patterns out of the result set of a sin-
gle pattern mining step, or whether they iterated pattern mining. The
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Figure 1.1. The process of classifier construction via supervised pattern mining

second dimension focused on whether they let the pattern mining and
selection process be guided by a particular model or not. While these
distinctions still stand, in our opinion, we have decided to structure this
chapter differently, discussing each of the three steps shown in Figure
1.1 separately: pattern mining, pattern set mining, and finally classifier
construction, and surveying the different, sometimes numerous, options
available.

1. Supervised Pattern Mining

The majority of texts in this book deal with different unsupervised
pattern mining settings. We will quickly repeat the relevant definitions
here to clarify which setting we discuss:

Definition 1.1 Given a data language LD which describes the syntax
of potential transactions in the data, a transactional data set D ⊆ LD

is of the form D = {d1, . . . , dn}, di ∈ LD. Given a pattern language
Lπ, we define a function match : Lπ × LD 7→ {0, 1}, which decides
whether a pattern occurs in a transaction or not. The set of transactions
from a data set D matched by a pattern π are referred to as its cover:
covD(π) = {d ∈ D | match(π, d) = 1}, and the size of the cover is
referred to as π’s (absolute) support: suppD(π) = |covD(π)|.

The easiest instantiation of this definition is the case of itemset databases:
given a set of items I, Lπ = LD = 2I , and match(π, d) = 1 ⇔ π ⊆ d.
For other types of data, such as for instance graph data or sequential
data, alternative definitions for LD, Lπ and match can be used, and most
ideas presented in the rest of this paper can be applied immediately for
these alternative definitions.

The biggest difference between unsupervised and supervised pattern
mining is the presence of a variable of interest. This variable is often the
class variable that can take on one out of several nominal class labels.
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Definition 1.2 Given a data language LD, and a set of class labels C =
{C1, . . . , Ck}, a labeled data set DC is of the form DC = {(d1, c1), . . . , (dn, cn)},
di ∈ LD, ci ∈ C.

The most common setting is that of classification, in which the task
is to learn a mechanism to predict the class label for unseen data based
on rules or patterns. Alternatively, the target for prediction can also be
numerical, requiring a regression model.

However, another popular setting is that of subgroup discovery, which
can be generalized to exceptional model mining when the target attribute
is not a single categorical attribute [23]. Instead of prediction, however,
the goal in this setting is the characterization of subsets of the data,
i.e. subgroups. Rules here define the subgroups in the data. As the pri-
mary focus of subgroup discovery and exceptional model mining is not
prediction, the quality criteria and heuristics used are sometimes differ-
ent. However, many of the techniques used are also common, and for
reasons of clarity of presentation, we will mainly focus on classification
in this chapter, and make differences to the other settings explicit when
appropriate.

Explicit class labels

A first, straight-forward interpretation considers class labels just ad-
ditional items in the transactional data, i.e. I ′ = I ∪ C, and imposes a
syntactical constraint on itemsets being mined from it: each itemset has
to include exactly one of those class-label items. This has the tremen-
dous advantage that existing techniques for FIM can be used directly,
e.g. Apriori [2], Eclat [38], or FPGrowh [19].

The typical FIM mining approach identifies interesting itemsets by us-
ing a minimum support threshold that itemsets’ support has to exceed,
and chooses relevant rules by using a minimum confidence threshold.
Since specializations of patterns, e.g. extensions of an itemset with ad-
ditional items, will have less than or equal support as the pattern itself,
the search space can be pruned, allowing for exhaustive enumeration.

This can be adapted by using class labels explicitly as items. It allows
to treat settings with more than two classes in a straightforward way:

For all class labels C:

1 Mine all itemsets including C that exceed the minimum sup-
port threshold

2 Retain all association rules r → C that exceed the minimum
confidence threshold
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The resulting association rules are referred to as class association rules
(cars) and are restricted to having only the class item as their right-hand
side. Their quality is usually evaluated using confidence as in the case
of general association rules:

Definition 1.3 Given a set of items I and a set of class labels C, a
class association rule is of the form r → c, r ⊆ I, c ∈ C. r is called its
left-hand side (LHS), antecedent, or rule body, c its right-hand side,
consequent, or rule head. Its confidence is defined as conf (r → c) =
supp

D
(r∪c)

supp
D
(r) .

Prominent examples of classification learners that build upon class asso-
ciation rules are the CBA [26] and CMAR [25] algorithms. The Har-

mony algorithm, introduced by Wang and Karypis [36], also takes this
view of class labels, as does the ART technique [16]. As a direct applica-
tion of FIM techniques, these methods are somewhat limited by typically
using only a single minimum support and confidence threshold, which
might be inappropriate in the case of skewed class distributions. They
can, however, benefit from all developments in FIM research, such as bet-
ter rule quality measures (replacing confidence), and the development of
more efficient algorithms.

Classes as data subsets

A second interpretation of different classes in the data is to consider
each class a separate data set and a whole database the union of those
subsets:

Definition 1.4 Given a labeled data set DC , and a set of class labels
C, the subsets ∀Ci ∈ C : Di = {(d, Ci) ∈ DC} are called classes.

Each of these classes can be treated like a distinct data set – the ARC-

BC algorithm by Antonie and Zäıane [3], for instance, mines cars from
each class separately, using a single relative support threshold that is
used as a constraint on each class in turn. Using this interpretation also
opens up several new possibilities.

The first, and potentially most important one, is that this opens up
the supervised pattern mining setting to all possible pattern languages:
whether itemsets, sequences, trees, or graph-structured data and pat-
terns, the techniques that we describe in this section are applicable to
all of them.

Second, there are new ways of using significance and quality measures.

Multiple support thresholds. There is the possibility of using
support thresholds. The XRules classifier [39], for instance, uses a
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separate minimum support threshold for each class. It is also a first
example of supervised pattern mining in a different pattern domain than
itemsets, producing predictive rules the rule body of which consists of
tree fragments, called structural rules in the work.

Instead of minimum support constraints, it is also natural to use max-
imum support constraints: a rule which is specific for one class should
after all not cover many examples in other classes than the class it is
predicting. The technique introduced by Kramer and De Raedt [21], for
instance, exploits this observation by finding patterns that are frequent
within one class, but infrequent in the other. It exploits a relationship
with version space theory from machine learning.

The CCCS classifier [4] even relies only on a maximum support con-
straint and removes the minimum support constraint entirely. It is ar-
gued that infrequent patterns in a class can be found by enumerating
small subsets of transactions in this class.

The problem that remains in each of these cases is a similar one as for
single support thresholds: how to set the parameters. A pattern that
occurs in 50% of one class, and 15% of the other, could be considered a
valuable predictive pattern, as might be a pattern that occurs in 80% of
the first and 30% of the second. Support constraints that accommodate
both patterns, however, e.g. suppmin = 0.5, suppmax = 0.3 would allow
results of questionable usefulness.

To address this, the Fitcare classifier proposed by Cerf et al. [10]
takes this idea further and uses a much larger parameter set: given k
classes, each class is mined separately, parametrized by a minimum sup-
port constraint and k − 1 maximum support constraints on all other
classes. To make this manageable, the support constraints are dynami-
cally adjusted during mining.

Statistical measures. A popular alternative approach is the use of
constraints on measures specifically designed for supersived data. These
measures typically serve as a replacement for confidence in selecting
relevant predictive patterns; the underlying patterns are still found using
a minimum support threshold on the complete data.

As a straightforward example, consider the accuracy measure:

Definition 1.5 Given two classes D+, D−, pattern r. The accuracy

of r is defined as acc(r) =
supp

D+ (r)+(|D−|−supp
D− (r))

|D| .

In general, most measures for evaluating the predictive power of a rule
can be expressed as functions from the values in the contingency table:
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C+ ¬C+

r p = supp
D+(r) n supp

D
(r)

¬r |D+| − supp
D+(r) N − n supp

D
(¬r) = |D| − supp

D
(r)

P = |D+| N = |D| − |D+| |D|

An arrangement in a contingency table invites the use of well-established
measures such as Information Gain or χ2 to mine correlating [28], con-
trast [6], or discriminating patterns [11]. Similarly, the growth rate can
be used to mine emerging patterns [13, 24, 35]. It divides the support in
one class by the support in the other one.

A measure that is often used in subgroup discovery is Weighted Rela-
tive Accuracy [22]:

Definition 1.6 Given a rule r → C+, its Weighted Relative Accuracy

is defined as WRAcc(r → C+) =
supp

D
(r)

|D|

(

supp
D+ (r)

supp
D
(r) − |D+|

|D|

)

.

In combination with a minimum support constraint, WRAcc can be
used in a class association rule miner instead of confidence [20]. This
idea can be generalized to other subgroup discovery measures (and the
measures listed above), replacing the confidence measure in class associ-
ation rule miners by numerous other functions as proposed by Atzmüller
and Puppe [5]. CMAR, for instance, filters cars using a χ2 minimum
threshold in addition to the minimum confidence threshold.

That the differences between different types of supervised patterns
mainly come down to a change in quality function has been shown in
detail by Novak et al. [31] and has been leveraged by Zimmermann and
De Raedt [42] to use one type of mining technique to address different
tasks: classification, subgroup discovery, and conceptual clustering.

Eliminating minimum support. The above settings essentially
apply statistical measures in addition to minimum support. The min-
imum support parameter remains a parameter that needs to be set.
Several approaches have successfully eliminated this parameter.

The main observation is that thresholds on quality measures can be
translated into support thresholds; hence, if a support threshold is not
given, it is possible to automatically determine an additional support
threshold for use in a pattern mining algorithm.

Returning to the accuracy measure, we can set a minimum threshold
on it: acc(r) ≥ θacc . This can be transformed into p+(N−n) ≥ θacc ·|D|,
and further into p ≥ θacc ·|D|−N+n ≥ θacc ·|D|−N . So we derive support
constraints based on the threshold on the quality measure itself [30].

For measures that are convex, which includes the ones mentioned
above but also many others, a similar argument is possible: convex
functions take their maxima at extreme points, i.e. points with p = 0 or
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n = 0. Thus, based on a threshold on the minimal acceptable values for
a statistical scoring function, thresholds on a pattern’s p and n can be
derived and enforced during mining. This makes it effective to use the
quality measure to prune during rule mining [37, 28, 6, 41, 7, 30, 11, 18,
12, 14, 42, 33, 43].

Thus far we have discussed approaches that use thresholds and ex-
haustively mine all patterns that satisfy the thresholds. An even easier
and often more effective approach is to perform top-k mining instead.
In top-k mining, one is interested in finding only those patterns which
have the k highest scores; the only parameter that needs to be specified
is k. This has been leveraged by [7, 40, 11, 12, 14, 33, 43]. The nature of
this mining process means that the threshold(s) increase during mining,
pruning more and more candidate patterns as the search progresses. To
achieve a quick increase of the threshold, it can be useful to perform a
best-first search during which it is always the rule with the highest upper
bound that is specialized.

2. Supervised Pattern Set Mining

The result of a supervised pattern mining operation, as so often in pat-
tern mining settings, is typically a very large set of redundant and con-
tradictory patterns. Even when mining only the top-k patterns, many
of those will cover (almost) the same instances. As we mentioned in the
introduction, when constructing classifiers, redundant patterns or pat-
terns that are irrelevant in the presence of others can be undesirable. If
the classifier takes the form of an unordered rule set, for instance, which
we will describe in Section 3, certain rules could strongly boost each
other, far in excess of their actual relevance and usefulness.

Hence many techniques in the literature include a mechanism for min-
ing or selecting a subset of the result set. Where the techniques for
supervised pattern mining intended to improve on Machine Learning
techniques, replacing heuristics with exhaustive search, the methods for
supervised pattern set mining are strongly inspired by Machine Learn-
ing techniques. In particular, both sequential (covering/re-weighting)
or separate-and-conquer, and decision tree like divide-and-conquer tech-
niques can be found time and again in works on supervised pattern
mining.

There are two wide-spread approaches to pattern set mining. One is
post-processing :

1 Mine a set of supervised patterns satisfying certain constraints

2 Select some patterns out of this set following certain criteria
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and iterative pattern set mining :

1 Mine a (set of) supervised pattern(s) satisfying certain constraints

2 Modify the constraints or data

3 Return to 1.

The main argument in favor of the post-processing approach is its ef-
ficiency. It allows to run a pattern mining algorithm only once and
hence avoids the possibly time consuming repeated execution of pattern
mining algorithms. The main arguments in favor of iterative mining al-
gorithms are their potentially higher accuracy and their potential to use
parameter-free pattern mining algorithms; in many of these algorithms,
it is not necessary to define a minimum support threshold in advance.

Both separate-and-conquer and divide-and-conquer techniques have
been used within either of these categories.

Most of these techniques can be understood in terms of the partition
that a set of patterns induces on the data. We therefore first need to
introduce the concept of equivalence relations and partitions:

Definition 2.1 An equivalence relation on D is a binary relation ∼
such that for all d1, d2, d3 ∈ D, the relation is:

1 Reflexive: d1 ∼ d1.

2 Symmetric: d1 ∼ d2 ⇒ d2 ∼ d1.

3 Transitive: d1 ∼ d2 ∧ d2 ∼ d3 ⇒ d1 ∼ d3.

The equivalence relation partitions D into disjunct subsets called equiv-
alence classes or blocks. The equivalence class of an element d ∈ D is
given as [d] = {d′ ∈ D | d ∼ d′}. The set of blocks is called partition or
quotient set, and is denoted by D/ ∼.

Intuitively, transactions are in an equivalence class if they can not be
distinguished from each other. We can use patterns to create a new
database, in which each transaction is described by a list of patterns
present in it. We consider two transactions equivalent in this new rep-
resentation if they are described using the same lists of patterns.

More formallly, an individual pattern r induces an equivalence relation
∀d1, d2 ∈ D, d1 ∼r d2 ⇔ match(r, d1) = match(r, d2), and so does a set
of patterns P: ∀d1, d2 ∈ D, d1 ∼P d2 ⇔ (∀r ∈ P : match(r, d1) =
match(r, d2)).

In fact, the partitioning of a data set into classes that we defined in
Definition 1.3 is induced by an equivalence relation based on the class
labels.
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In a supervised setting, it is important to distinguish blocks which are
pure and which are not pure. A block is pure if all examples in it have
the same class label. Within a supervised setting it is important that
the partition induced by a set of patterns contains mostly pure blocks:
if two examples with different class labels contain exactly the same set
of patterns, it will be impossible for a deterministic algorithm to predict
both correctly.

Most pattern set mining techniques can be summarized in the follow-
ing manner:

1 Mine or evaluate a (set of) pattern(s), possibly only on parts of
the data

2 Based on result of 1, modify the partition, for instance by removing
one block or several blocks, or by partitioning them further

3 Return to 1, unless a stopping criterion is met

The differences lie mainly in the blocks on which patterns are evaluated,
and in the choice of blocks that are modified.

Local evaluation, local modification

The first, and largest, class of techniques evaluates or mines patterns
locally, i.e. only on some of the blocks of a partition, and then also
modifies only some of those blocks, typically only those blocks from
which the patterns have been mined. This includes in particular those
techniques that draw more or less directly on machine learning forebears.

Separate-and-conquer. Sequential “local-local” techniques owe
much to the sequential covering paradigm of early rule learners. They
start from the full database and iteratively remove examples from the
dataset, as follows:

1 Find the best rule on the currently remaining data

2 Remove all data covered by that rule

3 Return to 1.

This approach falls squarely into the “local-local” category. Each pattern
splits the data that it has been mined on into two blocks (the local
modification) and its successor pattern is only mined on one of these,
the uncovered one (the local evaluation). Several early algorithms have
used this approach for post-processing, for instance CBA, ARC-BC,
and CMAR, whose authors refer to it as database coverage.
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Separate-and-conquer can be applied both in the post-processing set-
ting and in the iterative mining setting.

Post-processing can be done in two ways: 1) considering the complete
set of previously mined patterns in each iteration of the sequential cov-
ering algorithm, or 2) fixing the order in which patterns are considered
and only search for the best rule among those rules that have not been
considered in the order yet. The latter means that a) each pattern is only
considered once – if it is rejected, it will never be evaluated again, and
b) the decision which patterns are “best” given certain data is effectively
made before pattern set mining. In return, however, the complexity of
the learning algorithm is lower.

The algorithms mentioned above (CBA, ARC-BC, CMAR) proceed
by fixed order. CMAR differs from the other algorithms in removing
data instances only after they have been covered by several rules, guided
by a user-supplied parameter. CorClass also uses sequential covering
with a fixed order as post-processing. Another variation was proposed
by Aggarwal [1] in the context of string classification; here, the rules are
processed in order of confidence, but only those instances are removed
which are classified correctly by the rule under consideration.

The ART algorithm [16] learns several best cars, splits their respec-
tive coverage off, and re-iterates on the uncovered data. DDPMine by
Cheng et al. [12] is perhaps the algorithm that stays truest to the origi-
nal sequential covering idea: it mines a highest-scoring pattern, removes
all covered instances from the data, and recurs.

Divide-and-conquer techniques. The second type of “local-
local” techniques takes its cues from decision tree induction:

1 Find the best splitting criterion on a subset of the data

2 Split the data into two blocks corresponding to covered and un-
covered instances

3 Recur on the new blocks

A potential advantage of this type of technique is that all mistakes by one
pattern can be corrected by other patterns, since all data are reused in
later instances to derive additional patterns. In addition, patterns that
might not appear interesting on the whole data might become relevant
as soon as parts of the data are removed.

This technique is most commonly used in an iterative mining set-
ting, in which the best pattern is searched for using a branch-and-bound
top-1 pattern mining algorithm. Examples are Tree2, proposed by
Bringmann and Zimmermann [7], and MbT [14].
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A post-processing approach can also be used. For instance, Gay et al.
[17] developed a setting in which δ-free patterns are first mined, and
then combined for use as tests in a decision tree.

Global evaluation, global modification

Alternatively, patterns can be mined or evaluated on the entire data
set, and all blocks in the partition are modified. While this means
that mining (or selecting) patterns is done using the maximal amount of
information, this usually has to be paid for by increased computational
complexity, as in each iteration the complete data needs to be traversed.
Additionally, the semantics of patterns’ relationships are less easy to
understand than in the case of “local-local” approaches.

Such techniques necessarily proceed sequentially, either post-processing
or mining patterns one after another. The Picker∗ algorithm by Bring-
mann and Zimmermann [8] performs post-processing in this manner,
picking the pattern that creates the most balanced partition, and split-
ting all blocks accordingly. It proceeds according to the first option
for post-processing described above, considering all promising patterns.
The fCork [33] technique uses a measure based on correspondences:

Definition 2.2 Given an equivalence relation ∼P on a labeled data set
DC = D+ ∪ D−, the number of correspondences in this partition is
calculated as occ(P) =

∑

[d]∈DC/∼P
|[d] ∩ D+| · |[d] ∩ D−|.

and uses this measure both to post-process mined patterns, and to iter-
atively mine patterns that reduce correspondences the most. This cri-
terion, as well as that used by the Picker∗ algorithm, is sub-modular,
allowing to give a bound on the quality of greedy approximation to the
optimal solution.

There are other “global-global” techniques that differ in that they do
not manipulate the data explicitly: the technique introduced by Cheng
et al. [11] post-processes patterns by rewarding them for class correla-
tion on the full data and penalizing overlap on data already covered
by selected patterns. The Krimp technique, described by van Leeuwen
et al. [34], also falls into this category since it evaluates for each pattern
how much it adds to the overall, i.e. global, compression of the data,
post-processing a fixed order on patterns.

Instead of removing examples, a reasonable alternative is to attach a
weight to examples and modify the weights based on the current com-
position of a rule set, as in the following generic approach:

1 Find the best rule on the current weighted data

2 Modify the weights of the examples in the data
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3 Return to 1.

A reason to give a lower weight to an example may for instance be that
we already have many rules that predict this example correctly, and
we would like to focus on finding rules for examples that are predicted
incorrectly.

This setting performs global evaluation as each new pattern is evalu-
ated on the complete dataset and in principle the weights of all examples
can be modified.

Examples of approaches within this setting were proposed by Zim-
mermann and De Raedt [42] and by Saigo et al. [32], either by iterative
mining or by post-processing.

The upshot of these techniques is that the increased computational
complexity pays off in a pattern set of smaller cardinality than for “local-
local” approaches, typically of comparable or even better quality.

Local evaluation, global modification

Given the faster running times yet larger pattern sets of “local-local”
approaches, and the more expensive operation yet smaller, high-quality
sets of “global-global” techniques, the development of “local-global” al-
gorithms should be obvious:

1 Find a best pattern on a subset of the data

2 Based on all patterns, manipulate the entire data

3 Recur on the new blocks

Notwithstanding this statement, the ReMine algorithm proposed by
Zimmermann et al. [43] so far is the only one to proceed in this way to
iteratively mine supervised patterns.

Data instance-based selection

In addition to the partition-based techniques, there is another paradigm,
which selects patterns based on individual instances. The Harmony al-
gorithm retains for each training instance the highest-confidence rule, as
doesCCCS, whereas the technique described by Meretakis andWüthrich
[27], called Large Bayes (LB), selects patterns based on the instances
whose labels are to be predicted. This is similar to DeEP, described
by Li et al. [24], and LAC, proposed by Veloso et al. [35], which only
generate patterns that match the instances to be predicted by projecting
the data on the items contained in the unlabeled instance.
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3. Classifier Construction

After supervised patterns have been mined, and suitable subsets have
been selected, the remaining question is how to employ them for pre-
dictive purposes. The solutions that have been found fall into two main
categories: 1) direct use of patterns as rules to predict the label of an
unseen class – the techniques following this paradigm borrow heavily
from rule learning approaches in machine learning, or 2) indirect use of
patterns in a model; here patterns are typically treated as features that
are used in well-established machine learning methods.

Direct classification

There are two main methods in rule learning when it comes to mak-
ing predictions. In decision lists, rules are ordered according to some
criterion and the first rule that matches the unseen instance makes the
prediction. For such classifiers to work requires rules with high accuracy
that at the same time do not overfit the training data. This means that
certain approaches to optimizing quality measures will work better than
others: given that maximizing information gain or χ2 trades off corre-
lation with effect size, maximizing confidence or WRAcc will be more
suitable for such classifiers. CBA follows this first approach, ordering
the rule list by confidence (descending), support (descending) and length
(ascending), as does LAC, ordering by information gain (descending)

The second method consists of various voting mechanisms that collect
all rules that match the unseen instance and has each class “gather votes”
from them. This approach places less importance on the prediction
of individual rules and is related to the ensembles idea from machine
learning: if predictors’ errors are uncorrelated, using several of them
should remove many non-systematic errors.

A straightforward method consists of majority voting, in which the
predicted class label is that predicted by the majority of rules. Alterna-
tively, rules’ votes can be weighted, by their accuracy, strength, or sup-
port in a given class, for instance, and the class with the strongest vote is
predicted. Many pattern-based classifiers use this scheme: CMAR per-
forms weighted voting, discounting rules’ vote by their deviation from
their potentially maximal χ2-score, whereas FitCare simply adds up
rules relative support per class, as does ARC-BC. CAEP sums up pat-
terns’ growth rate multiplied by their relative support in a class, and
DeEP takes the proportion of instances in a class that contain any of
the voting patterns as the weight of the vote for that class. Harmony

includes three voting options: either the highest-confidence rule, or all,
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or the top-k rules vote for a particular class, similar to XRules, which
also uses different rule strength measures.

CTC has used different options: the decision list, majority vote, and
two weighted voting strategies, as has CorClass.

The analogy with machine learning is exploited most in the gBoost

algorithm [32]. In gBoost, an analogy is observed between weak learn-
ers and patterns. This analogy is exploited by modifying the LPBoost

boosting algorithm, developed in the machine learning literature, to it-
eratively search for patterns instead of weak learners. It can be shown
that under certain conditions this algorithm finds optimal linear classifi-
cation and regression models, where patterns are used as features in the
linear models. The boosting algorithm operates by iteratively modifying
the weights of examples based on the outcome of a linear program.

A particular feature of some sets of rules is that they represent decision
trees. Essentially, every path from the root of a decision tree to a leaf
of a tree can be seen as a rule that predicts the label of that leaf. All
the rules cover disjoint parts of the data. It is hence not surprising
that patterns can also be used to represent paths in decision trees. This
observation was exploited in the DL8 approach by Nijssen and Fromont
[29], which showed that by post-processing a set of patterns found under
constraints, a decision tree can be constructed that is optimal under
certain conditions. The approach differs from Tree2 (see below) in that
each pattern represents a path in the tree, while in Tree2 each pattern
represents a node.

Indirect classification

Indirect classification comes in several flavors. First, there are the
techniques that partition the data, sort unseen instances into a certain
block, and use the majority label of the block’s instances in the training
data to make the prediction, like decision trees. The Tree2 and MbT

build this kind of classifier. Other machine learning formalisms can also
be adopted to work with supervised patterns – the LB algorithm uses a
Näıve Bayes-like formulation to derive predictions from the support of
patterns in different classes – different classes have different products of
probabilities and the class with the highest probability is predicted.

This is somewhat similar to the Krimp algorithm: in this technique,
coding tables are created for each class separately, and an unseen in-
stance’s label is predicted based on the coding table that compresses it
best.

These approaches are arguably still limited by what the pattern them-
selves can do, although the upshot is that their models are somewhat
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more understandable. The alternative is to mine patterns as features for
use in sophisticated machine learning techniques that can add modeling
and generalization capabilities that are missing from symbolic patterns
themselves. This is the second big group of techniques: the technique
proposed by Kramer and De Raedt [21] belongs to it, as does DDP-

Mine, the method introduced by Cheng et al. [12], Picker∗, fCork,
and ReMine.

4. Summary

In this chapter, we have given a high level overview of supervised pat-
tern mining and its application to prediction, specifically classification.
We have abstracted from the pattern languages used and structured the
chapter along the three main steps involved in building a classifier from
class-labeled data: supervised pattern mining, supervised pattern set
mining, and classifier construction.

Regarding the first step, we have laid out that many techniques view
different classes as separate subsets of the data and evaluate patterns’ co-
occurrence with one of these subsets. In our opinion, this view clarifies
that different quality measures will lead to similar semantical informa-
tion of patterns, and that different mining approaches can be taken to
find patterns that score highly with any of these measures.

Regarding the second step, we have pointed out the similarities to
approaches that have been pioneered in machine learning in the context
of rule learning, decision tree induction, and instance-based learning.
We have interpreted the former two approaches in terms of partitions
to show the similarities of existing techniques, and also identified two
types of approaches that always manipulate the entire data. Although
some pattern set mining techniques, in particular iterative ones, make
certain demands on the pattern mining step, most of them can still be
combined relatively freely with different pattern mining techniques.

Finally, when it comes to classifier building, we have made the dis-
tinction between direct and indirect classification, with the former par-
alleling rule-based classification in machine learning, and the latter com-
prising quite a few approaches that mine patterns as features for use in
propositional learners. As a comparison of references shows, different
classifiers also do not track closely with particular pattern or pattern set
mining approaches.

In general, in surveying the field we find that many solutions to the
three phases have been developed, most of which can be mixed-and-
matched rather freely. The field is larger than the algorithms we have
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mentioned here yet many techniques are arguably variations of the ap-
proaches that we have contrasted.
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