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Abstract. There seems to be an upper limit to predicting the outcome
of matches in (semi-)professional sports. A number of works have pro-
posed that this is due to chance and attempts have been made to simulate
the distribution of win percentages to identify the most likely proportion
of matches decided by chance. We argue that the approach that has been
chosen so far makes some simplifying assumptions that cause its result
to be of limited practical value, especially for settings where teams do
not play all possible opponents. Instead, we propose to use clustering of
statistical team profiles and observed scheduling information to derive
limits on the predictive accuracy for particular seasons, which can be
used to assess the performance of predictive models on those seasons.
Using NCAA basketball data, we show that the resulting simulated dis-
tributions are much closer to the observed distributions and give higher
assessments of chance and tighter limits on predictive accuracy. We also
show similar results for the NBA.

1 Introduction

In prior work on the topic of NCAA basketball [14], we speculated about the
existence of a “glass ceiling” in (semi-)professional sports match outcome pre-
diction, noting that season-long accuracies in the mid-seventies seemed to be the
best that could be achieved for college basketball, with similar results for other
sports. One possible explanation for this phenomenon is that we are lacking the
attributes to properly describe sports teams, having difficulties to capture player
experience or synergies, for instance. While this is the focus of on-going work in
the community, especially for “under-described” sports such as European soccer
or NFL football, we consider a different question in this paper: the influence of

chance on match outcomes.

Even if we were able to accurately describe sports teams in terms of their
performance statistics, the fact remains that athletes are humans, who might
make mistakes and/or have a particularly good/bad day, that matches are ref-
ereed by humans, see before, that injuries might happen during the match, that
the interaction of balls with obstacles off which they ricochet quickly becomes
too complex to even model etc. Each of these can affect the match outcome
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to varying degrees and especially if we have only static information from be-
fore the match available, it will be impossible to take them into account during
prediction.

While this may be annoying from the perspective of a researcher in sports
analytics, from the perspective of sports leagues and betting operators, this is a
feature, not a bug. Matches of which the outcome is effectively known beforehand
do not create a lot of excitement among fans, nor will they motivate bettors to
take risks.

Intuitively, we would expect that chance has a stronger effect on the outcome
of a match if the two opponents are roughly of the same quality, and if scoring
is relatively rare: since a single goal can decide a soccer match, one (un)lucky
bounce is all it needs for a weaker team to beat a stronger one. In a fast-paced
basketball game, in which the total number of points can number in the two or
even three hundreds, a single basket might be the deciding event between two
evenly matched teams but probably not if the skill difference is large.

For match outcome predictions, a potential question is then: “How strong is

the impact of chance for a particular league?”, in particular since quantifying
the impact of chance also allows to identify the “glass ceiling” for predictions.
The topic has been explored for the NFL in [2–4], which reports

The actual observed distribution of win-loss records in the NFL is indis-
tinguishable from a league in which 52.5% of the games are decided at
random and not by the comparative strength of each opponent.

Using the same methodology, Weissbock et al. [13] derive that 76% of matches
in the NHL are decided by chance. As we will argue in the following section,
however, the approach used in those works is not applicable to NCAA basketball.

Before we continue, a short remark on terminology: Burke uses the term
“luck” but we prefer the term “chance” since “luck” implies a positive outcome,
whereas “chance” is meant to indicate randomness.

2 Identifying the impact of chance by Monte Carlo
simulations

The general idea used by Burke and Weissbock1 is the following:

1. A chance value c ∈ [0, 1] is chosen.
2. Each out of a set of virtual teams is randomly assigned a strength rating.
3. For each match-up, a value v ∈ [0, 1] is randomly drawn from a uniform

distribution.

– If v ≥ c, the stronger team wins.
– Otherwise, the winner is decided by flipping an unweighted coin.

4. The simulation is re-iterated a large number of times (e.g. 10, 000) to smooth
results.

1 For details for Weissbock’s work, we direct the reader to [12].
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Figure 1 shows the distribution of win percentages for 340 teams, 40 matches
per team (roughly the settings of an NCAA basketball season including playoffs),
and 10, 000 iterations for c = 0.0 (pure skill), c = 1.0 (pure chance), and c = 0.5.
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Fig. 1. MC simulated win percentage distributions for different amounts of chance

By using a goodness of fit test – χ2 in the case of Burke’s work, F-Test in the
case of Weissbock’s – the c-value is identified for which the simulated distribution
fits the empirically observed one best, leading to the values reproduced in the
introduction. The identified c-value can then be used to calculate the upper limit
on predictive accuracy in the sport: since in 1− c cases the stronger team wins,
and a predictor that predicts the stronger team to win can be expected to be
correct in half the remaining cases in the long run, the upper limit lies at:

(1− c) + c/2,

leading in the case of

– the NFL to: 0.475 + 0.2625 = 0.7375, and
– the NHL to: 0.24 + 0.36 = 0.62

Any predictive accuracy that lies above those limits is due to the statistical
quirks of the observed season: theoretically it is possible that chance always
favors the stronger team, in which case predictive accuracy would actually be
1.0. As we will argue in the following section, however, NCAA seasons (and not
only they) are likely to be quirky indeed.

3 Limitations of the MC simulation for NCAA basketball

A remarkable feature of Figure 1 is the symmetry and smoothness of the resulting
curves. This is an artifact of the distribution assumed to model the theoretical
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distribution of win percentages – the Binomial distribution – together with the
large number of iterations. This can be best illustrated in the “pure skill” setting:
even if the stronger team were always guaranteed to win a match, real-world
sports schedules do not always guarantee that any team actually plays against a
representative mix of teams both weaker and stronger than itself. A reasonably
strong team could still lose every single match, and a weak one could win at a
reasonable clip. One league where this is almost unavoidable is the NFL, which
consists of 32 teams, each of which plays 16 regular season matches (plus at
most 4 post-season matches), and ranking “easiest” and “hardest” schedules in
the NFL is an every-season exercise. Burke himself worked with an empirical
distribution that showed two peaks, one before 0.5 win percentage, one after. He
argued that this is due to the small sample size (five seasons).
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Fig. 2. Observed distribution of win percentages in the NCAA, 2008–2013

The situation is even more pronounced in NCAA basketball, where 340+
Division I teams play at most 40 matches each. Figure 2 shows the empirical
distribution for win percentages in NCAA basketball for six season (2008–2013).2

While there is a pronounced peak for a win percentage of 0.5 for 2008 and 2012,
the situation is different for 2009, 2010, 2011, and 2013. Even for the former
two seasons, the rest of the distribution does not have the shape of a Binomial
distribution. Instead it seems to be that of a mix of distributions – e.g. “pure
skill” for match-ups with large strength disparities overlaid over “pure chance”
for approximately evenly matched teams.

NCAA scheduling is subject to conference memberships and teams will try to
pad out their schedules with relatively easy wins, violating the implicit assump-
tions made for the sake of MC simulations. This also means that the “statistical

2 The choice of seasons is due to presentation concerns, especially in the case of visu-
alizations. Other/additional seasons exhibit similar phenomena.
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quirks” mentioned above are often the norm for any given season, not the ex-
ception. Thought to its logical conclusion, the results that can be derived from
the Monte Carlo simulation described above are purely theoretical: if one could
observe an effectively unlimited number of seasons, during which schedules
are not systematically imbalanced, the overall attainable predictive accu-
racy were bound by the limit than can be derived by the simulation. For a given
season, however, and the question how well a learned model performed w.r.t. the
specificities of that season, this limit might be too high (or too low).
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Fig. 3. Distribution of win percentages 2008

As an illustration, consider Figure 3, showing several season simulations as
well as observed winning percentages for the 2008 season.3 Differing from Burke
and Weissbock, we use neither the χ2 test (which requires frequency binning), to
compare distributions, nor the F-Test, which only compares variances. Instead,
we chose the Kolmogorov-Smirnov Test, which returns the maximum distances
between two distributions’ cumulative distribution functions (CDF).

The MC simulation that matches the observed proportion of teams having a
win percentage of 0.5 is derived by setting c = 0.42, implying that a predictive
accuracy of 0.79 should be possible. The MC simulation that fits the observed
distribution best, according to the Kolmogorov-Smirnov (KS) test (which over-
estimates the proportion of teams having a win percentage of 0.5 along the way),
is derived from c = 0.525 (same as Burke’s NFL analysis), setting the predictive
limit to 0.7375. Both curves have visually nothing in common with the observed
distribution, yet the null hypothesis – that both samples derive from the same
distribution – is not rejected at the 0.001 level by the KS test for sample com-
parison. This hints at the weakness of using such tests to establish similarity:

3 Other seasons show similar behavior, so we treat 2008 as a representative example.
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CDFs and standard deviations might simply not provide enough information to
decide whether a distribution is appropriate.

4 Related work

As mentioned above, Weissbock [12, 13] and Burke [2–4] use a Monte Carlo sim-
ulation to identify winning percentage distributions most similar to an observed
one using a comparison measure and then derive the chance value. We have given
the details of their approach in Section 2.

Academic work on the subject is relatively rare. Mauboussin [8] compares
the variance of winning percentages of observed seasons to the variance of an
all-chance season to derive the impact of chance. As a result of this analysis, he
claims that the influence of chance on the NBA is only 12% because the skill
difference between teams were so large. This is an astounding number since it
would imply that one can achieve a predictive accuracy of 94%! Incidentally,
this would make lucrative betting on the NBA impossible.

Aoki et al. [1] consider the distribution of points won at home and away for
teams (for soccer, for instance, 3 for a win, 1 for a tie, 0 for a loss), which in an
equal-skill (pure-chance) league would be normally distributed. By comparing
the observed distribution’s variance to the expected one, they derive a coefficient
placing different leagues on a skill-chance spectrum. They report basketball as
being least influenced by chance, followed by volleyball, soccer, and handball.
They do not report concrete chance values, except for the NBA where they esti-
mate it as being 35%, but explore how many teams that are much better (or much
worse) than the rest have to be removed to end up with a pure-chance league.
Basketball (50%) and volleyball (40%) require many such removals, whereas in
soccer (19%) and handball (14%) there are only few outlier teams.

Gilbert and Wells [7] place “luck” in the context of ludology, the study of
complex games. Defining two measures, , they consider individual MLB (base-
ball), NFL, NHL, and NBA matches. They find NBA matches to be less affected
by chance than NHL and MLB ones (due to larger skill differences in the NBA).
They also report NFL matches to be least affected by discuss that the shorter
season seems to cancel this out.

Sarkar and Kamath [11] consider soccer, and aim to establish whether there
is a difference in “X-factors” between the first and last six teams in a season’s
ranking, and to what degree chance affects the final rankings. They compare
expected (predicted) points, goals etc. to observed ones to derive what they term
“X-factors”. By comparing the mean of X-factors between consecutive positions
in the ranking, they find that the X-factor has explanatory power for the first
two positions, and that chance has no effect on the top-six.

Csurilla et al. [5] consider the results of 3×3 and 5×5 basketball world cups,
using the final ranking as ground truth. Using four chance measures, they find
that women’s basketball competitions are less influenced by chance than men’s,
and that 3 × 3 is more influenced by chance than 5 × 5. They do not report
concrete chance values.
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5 Deriving limits for specific seasons

The ideal case derived from the MC simulation does not help us very much in
assessing how close a predictive model comes to the best possible prediction.
Instead of trying to answer the theoretical question: What is the expected limit

to predictive accuracy for a given league?,
we therefore want to answer the practical question: Given a specific season, what

was the highest possible predictive accuracy?.
To this end, we still need to find a way of estimating the impact of chance

on match outcomes, while taking the specificities of scheduling into account. The
problem with estimating the impact of chance stays the same, however: for any
given match, we need to know the relative strength of the two teams but if we
knew that, we would have no need to learn a predictive model in the first place.
If one team has a lower adjusted offensive efficiency than the other (i.e. scoring
less), for example, but also a lower adjusted defensive efficiency (i.e. giving up
fewer points), should it be considered weaker, stronger, or of the same strength?

Learning a model for relative strength and using it to assess chance would
therefore feed the models potential errors back into that estimate. What we can

attempt to identify, however, is which teams are similar.

5.1 Clustering team profiles and deriving match-up settings

Offensive stats Defensive stats
AdjOEff Points per 100 possessions scored, AdjDEff Points per 100 possessions allowed,

adjusted for opponent’s strength adjusted for opponent’s strength
OeFG% Effective field goal percentage DeFG% eFG% allowed
OTOR Turnover rate DTOR TOR forced
OORR Offensive rebound rate DORR ORR allowed
OFTR Free throw rate DFTR FTR allowed

Table 1. Statistics used to described teams for clustering, definitions can be found at
www.basketball-reference.com/glossary

We describe each team in terms of their adjusted efficiencies, and their Four
Factors, adopting Ken Pomeroy’s representation [10]. Each statistic is present
both in its offensive form – how well the team performed, and in its defensive
form – how well it allowed its opponents to perform (Table 1). We use the
averaged end-of-season statistics, leaving us with approximately 340 data points
per season. Clustering daily team profiles, to identify finer-grained relationships,
and teams’ development over the course of the season, is left as future work.
As a clustering algorithm, we used the WEKA [6] implementation of the EM
algorithm with default parameters. This involves EM selecting the appropriate
number of clusters by internal cross validation, with the second row of Table 2
showing how many clusters have been found per season.

As can be seen, depending on the season, the EM algorithm does not separate
the 340 teams into many different statistical profiles. Additionally, as the third
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Season 2008 2009 2010 2011 2012 2013

Number of Clusters (EM) 5 4 6 7 4 3
Cluster IDs in Tournament 1,5 4 2,6 1,2,5 3,4 2

# Clusters (Optimized EM, Section 7) 20 4 19 20 14 13
Table 2. Number of clusters per season and clusters represented in the NCAA tour-
nament (second line)

row shows, only certain clusters, representing relatively strong teams, make it
into the NCAA tournament, with the chance to eventually play for the national
championship (and one cluster dominates, like Cluster 5 in 2008). These are
strong indications that the clustering algorithm does indeed discover similarities
among teams that allow us to abstract “relative strength”. Using the clustering
results, we can re-encode a season’s matches in terms of the clusters to which
the playing teams belong, capturing the specificities of the season’s schedule.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Weaker opponent

Cluster 1 76/114 161/203 52/53 168/176 65/141 381/687 (0.5545)
Cluster 2 100/176 298/458 176/205 429/491 91/216 705/1546 (0.4560)
Cluster 3 7/32 55/170 47/77 119/194 4/40 119/513 (0.2320)
Cluster 4 22/79 161/379 117/185 463/769 28/145 117/1557 (0.0751)
Cluster 5 117/154 232/280 78/83 232/247 121/198 659/962 (0.6850)

Table 3. Wins / total matches for pairings of teams of the clusters indicated in the
row and column of each cell, 2008

Table 3 summarizes the re-encoded schedule for 2008.4 The re-encoding al-
lows us to flesh out the intuition mentioned in the introduction some more:
teams from the same cluster can be expected to have approximately the same
strength, increasing the impact of chance on the outcome. Since we want to take
all non-chance effects into account, we encode pairings in terms of which team
has home court. The left margin indicates which team has home court in the
pairing: this means, for instance, that while teams from Cluster 1 beat teams
from Cluster 2 almost 80% of the time when they have home court advantage,
teams from Cluster 2 prevail in almost 57% of the time when home court ad-
vantage is theirs. The effect of home court advantage is particularly pronounced
on the diagonal, where unconditional winning percentages by definition should
be at approximately 50%. Instead, home court advantage pushes them always
above 60%. One can also see that many teams — all those in clusters 3 and 4 —
mainly play against stronger teams, and the teams in cluster 5 mainly against
weaker ones. In those cases, chance would need to intervene rather strongly to
alter match outcomes.

4 The results for other seasons can be found in Appendix A.
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Table 3 is the empirical instantiation of our remark in Section 3: instead of
a single distribution, 2008 seems to have been a weighted mixture of 25 dis-
tributions.5 None of these specificities can be captured by the unbiased MC
simulation.

5.2 Estimating chance

The re-encoded schedule includes all the information we need to assess the effects
of chance. The win percentage for a particular cluster pairing indicates which of
the two clusters should be considered the stronger one in those circumstances,
and from those matches that are lost by the stronger team, we can calculate the
chance involved.

Consider, for instance, the pairing Cluster 5 – Cluster 2. When playing at
home, teams from Cluster 5 win this match-up in 82.85% of the cases! This is
the practical limit to predictive accuracy in this setting for a model that always
predicts the stronger team to win, and in the same way we used c to calculate
that limit above, we can now invert the process: c = 2 ∗ (1 − 0.8285) = 0.343.
When teams from Cluster 5 welcomed teams from Cluster 2 on their home court
in 2008, the overall outcome is indistinguishable from 34.3% of matches having
been decided by chance.

The impact of chance for each cluster pairing, and the number of matches
that have been played in particular settings, finally, allows us to calculate the
effect of chance on the entire season, and using this result, the upper limit for
predictive accuracy that could have been reached for a particular season.

Season 2008 2009 2010 2011 2012 2013

Unconstrained EM

KS 0.0526 0.0307 0.0506 0.0327 0.0539 0.0429
Chance 0.5736 0.5341 0.5066 0.5343 0.5486 0.5322

Limit for predictive accuracy 0.7132 0.7329 0.7467 0.7329 0.7257 0.7339

Optimized EM (Section 7)

KS 0.0236 0.0307 0.0396 0.0327 0.0315 0.0410
Chance 0.4779 0.5341 0.4704 0.5343 0.4853 0.5311
Limit 0.7610 0.7329 0.7648 0.7329 0.7573 0.7345

KenPom prediction accuracy 0.7105 0.7112 0.7244 0.7148 0.7307 0.7035
ANN prediction accuracy from [14] 0.7136 0.7357 0.7115 0.7248 0.7120 0.7187

Table 4. Effects of chance on different seasons’ matches and limit on predictive accu-
racy (for team encoding shown in Table 1)

The upper part of Table 4 shows the resulting effects of chance and the limits
regarding predictive accuracy for the six seasons under consideration. Notably,
the last two rows show the predictive accuracy when using the method described

5 Although some might be similar enough to be merged.



10 A. Zimmermann

on [10] and results we have reported in [14], using an artificial neural network
model. Ken Pomeroy’s method uses the Log5-method, with Pythagorean expec-
tation to derive each team’s win probability, and the adjusted efficiencies of the
home (away) team improved (degraded) by 1.4%. This method effectively always
predicts the stronger team to win and should therefore show similar behavior as
the observed outcomes. Its accuracy is always close to the limit and in one case
(2012) actually exceeds it. One could explain this by the use of daily instead of
end-of-season statistics but there is also another aspect in play. To describe that
aspect, we need to discuss simulating seasons.

6 Simulating seasons

With the scheduling information and the impact of chance for different pairings,
we can simulate seasons in a similar manner to the Monte Carlo simulations we
have discussed above, but with results that are much closer to the distribution
of observed seasons:

1. A chance value c ∈ [0, 1] is chosen.
2. A set of virtual teams is assigned cluster labels as derived by the EM cluster-

ing in such a manner that the distribution of instances to clusters matches
the observed distribution.

3. For each match-up, a value v ∈ [0, 1] is randomly drawn from a uniform
distribution.

– If v ≥ c, the stronger team wins.
– Otherwise, the winner is decided by flipping a weighted coin, with the

weight derived from the observed win probability for the cluster pairing.

4. The simulation is re-iterated a large number of times (e.g. 10, 000) to smooth
results.

Figure 3 shows that while the simulated distribution is not equivalent to the
observed one, it shows very similar trends. In addition, while the KS test does not
reject any of the three simulated distributions, the distance of the one resulting
from our approach to the observed one is lower than for the two Monte Carlo
simulated ones.

The figure shows the result of simulating the season 10, 000 times, leading
to the stabilization of the distribution. For fewer iterations, e.g. 100 or fewer,
distributions that diverge more from the observed season can be created. In par-
ticular, this allows the exploration of counterfactuals: if certain outcomes were
due to chance, how would the model change if they came out differently? Fi-
nally, the information encoded in the different clusters – means of statistics and
co-variance matrices – allows the generation of synthetic team instances that fit
the cluster (similar to value imputation), which in combination with schedul-
ing information could be used to generate wholly synthetic seasons to augment
the training data used for learning predictive models. We plan to explore this
direction in future work.
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7 Finding a good clustering

Coming back to predictive limits, there is no guarantee that the number of
clusters found by the unconstrained EM will actually result in a distribution of
win percentages that is necessarily close to the observed one. Instead, we can
use the approach outlined in the preceding section to find a good clustering to
base our chance and predictive accuracy limits on:

1. We let EM cluster teams for a fixed number of clusters (we evaluated 4–20)
2. For a derived clustering, we simulate 10,000 seasons
3. The resulting distribution is compared to the observed one using the Kolmogorov-

Smirnov score

k
Season

2008 2009 2010 2011 2012 2013

4 0.0838 0.0307 0.0560 0.0702 0.0539 0.0644
5 0.0710 0.0356 0.0543 0.0624 0.0609 0.0468
6 0.0488 0.0377 0.0506 0.0528 0.0404 0.0448
7 0.0494 0.0382 0.0433 0.0327 0.0390 0.0432
8 0.0466 0.0381 0.0417 0.0355 0.0404 0.0435
9 0.0534 0.0338 0.0424 0.0396 0.0398 0.0414
10 0.0564 0.0332 0.0421 0.0349 0.0370 0.0503
11 0.0478 0.0342 0.0447 0.0336 0.0325 0.0433
12 0.0326 0.0436 0.0545 0.0390 0.0378 0.0410
13 0.0357 0.0432 0.0559 0.0367 0.0351 0.0402

14 0.0374 0.0384 0.0511 0.0342 0.0315 0.0439
15 0.0385 0.0449 0.0578 0.0380 0.0350 0.0412
16 0.0388 0.0456 0.0570 0.0364 0.0361 0.0527
17 0.0269 0.0437 0.0480 0.0433 0.0441 0.0464
18 0.0293 0.0413 0.0441 0.0409 0.0327 0.0449
19 0.0276 0.0420 0.0396 0.0392 0.0462 0.0462
20 0.0236 0.0387 0.0460 0.0289 0.0371 0.0493

Table 5. KS similarity between observed and simulated distributions for different
numbers of clusters, lower is better, best values are indicated in bold

The results of this optimization are shown in Table 5. What is interesting
to see is that a) increasing the number of clusters does not automatically lead
to a better fit with the observed distribution, and b) clusterings with different
numbers of clusters occasionally lead to the same KS, validating our comment
in Footnote 5.

Based on the clustering with the lowest KS, we calculate chance and pre-
dictive limit and show them in the second set of rows of Table 4. EM already
found the opimal assigment of teams to clusters for 2009 but for other seasons,
there are quite a few more clusters. Generally speaking, optimizing the fit al-
lows to lower the KS quite a bit and leads to lower estimated chance and higher
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predictive limits. For both categories, however, the fact remains that different
seasons were influenced by chance to differing degrees and therefore different
limits exist. Furthermore, the limits we have found stay significantly below 80%
and are different from the limits than can be derived from MC simulation.

Those results obviously come with some caveats:

1. Teams were described in terms of adjusted efficiencies and Four Factors –
adding or removing statistics could lead to different numbers of clusters and
different cluster memberships.

2. Predictive models that use additional information, e.g. experience of players,
or networks models for drawing comparisons between teams that did not play
each other, can exceed the limits reported in Table 4.

The table also indicates that it might be less than ideal to learn from preceding
seasons to predict the current one (the approach we have chosen in our previous
work): having a larger element of chance (e.g. 2009) could bias the learner against
relatively stronger teams and lead it to underestimate a team’s chances in a more
regular season (e.g. 2010).

8 NBA results

Finally, we apply the same approach to NBA seasons. The NBA contains much
fewer teams (30), and plays many more matches (82), with the result that every
team plays every other one at least twice.

Season 2008 2009 2010 2011 2012 2013 2014 2015

Optimized EM (Section 7)

Number of clusters 5 6 5 9 6 10 9 7
KS 0.0749 0.0693 0.0848 0.0802 0.0618 0.0822 0.0512 0.0840

Chance 0.5821 0.5779 0.5930 0.5802 0.6091 0.5841 0.6005 0.6066
Limit 0.7090 0.7110 0.7035 0.7099 0.6954 0.7080 0.6998 0.6967

KenPom prediction 0.6725 0.6920 0.6700 0.6697 0.6601 0.6530 0.6475 0.6590
NB prediction accuracy from [14] 0.6608 0.6494 0.6506 0.6331 0.6187 0.6240 0.6438 0.6545
Table 6. Effects of chance on different NBA seasons’ matches and limits on predictive
accuracy

The results can be seen in Table 6. Compared to Table 4, chance values
are higher, and predictive limits lower. This is expected since talent differences
between NBA teams are less than for NCAAB teams (only the best NCAAB
players end up in the NBA after all), which allows chance to have a bigger effect,
as we discussed in the introduction. We also see that the prediction accuracies of
the predictive models are lower, most notably for Ken Pomeroy’s model, which,
as mentioned before, effectively always predicts the best team to win.
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9 Summary and conclusions

In this paper, we have considered the question of the impact of chance on the
outcome of (semi-)professional sports matches in more detail. In particular, we
have shown that the unbiased MC simulations used to assess chance in the
NFL and NHL are not applicable to the college basketball setting. We have
argued that the resulting limits on predictive accuracy rest on simplifying and
idealized assumptions and therefore do not help in assessing the performance of
a predictive model on a particular season.

As an alternative, we propose clustering teams’ statistical profiles and re-
encoding a season’s schedule in terms of which clusters play against each other.
Using this approach, we have shown that college basketball seasons violate the
assumptions of the unbiased MC simulation, given higher estimates for chance,
as well as tighter limits for predictive accuracy.

There are several directions that we intend to pursue in the future. First,
as we have argued above, NCAA basketball is not the only setting in which
imbalanced schedules occur. We would expect similar effects in the NFL, and
soccer, which, as mentioned, is lower-scoring and where teams typically only play
each other twice. What is needed to explore this question is a good statistical
representation of teams, something that is easier to achieve for basketball than
football/soccer teams.

In addition, as we have mentioned in Section 6, the exploration of counter-
factuals and generation of synthetic data should help in analyzing sports better.
We find a recent paper [9] particularly inspirational, in that the authors used a
detailed simulation of substitution and activity patterns to explore alternative
outcomes for an NBA playoff series.

Finally, since we can identify different cluster pairings and the differing of
chance therein, separating those cases and training classifiers idependently for
each could improve classification accuracy. To achieve this, however, we will need
solve the problem of clustering statistical profiles over the entire season – which
should also allow to identify certain trends over the course of seasons.
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A Clustered schedules for different seasons,
unconstrained EM

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Weaker opponent

Cluster 1 133/197 46/182 105/272 1/45 0/696 (0.0000)
Cluster 2 210/227 231/352 262/374 76/247 472/1200 (0.3933)
Cluster 3 261/308 192/357 409/663 56/261 453/1589 (0.2851)
Cluster 4 210/211 341/374 424/448 515/818 975/1851 (0.5267)
Table 7. Wins and total matches for different cluster pairings, 2009

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Weaker opponent
Cluster 1 129/204 18/104 6/14 47/126 33/145 0/18 0/611 (0.0000)
Cluster 2 163/167 269/437 76/105 255/292 134/195 73/249 628/1445 (0.4346)
Cluster 3 29/34 64/95 12/18 49/58 21/41 30/87 163/333 (0.4895)
Cluster 4 109/136 71/240 19/46 159/232 55/119 6/87 109/860 (0.1267)
Cluster 5 147/163 87/166 14/23 101/123 71/118 17/57 349/650 (0.5369)
Cluster 6 120/120 336/361 100/117 169/172 133/141 360/579 858/1490 (0.5758)

Table 8. Wins and total matches for different cluster pairings, 2010
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Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Weaker opponent
Cluster 1 89/138 140/174 40/40 69/73 93/185 97/103 86/99 525/812 (0.6466)
Cluster 2 66/148 235/369 70/71 141/167 29/121 166/206 118/176 495/1258 (0.3935)
Cluster 3 2/14 15/55 29/39 16/42 0/8 20/85 4/31 0/274 (0.0000)
Cluster 4 10/48 48/151 36/40 42/85 2/28 55/100 28/68 91/520 (0.1750)
Cluster 5 166/217 187/206 43/43 79/80 205/339 80/83 148/160 703/1128 (0.6232)
Cluster 6 11/49 76/178 77/88 72/97 7/47 94/151 34/65 183/675 (0.2711)
Cluster 7 29/82 97/160 57/58 59/72 30/125 74/92 79/127 287/716 (0.4008)

Table 9. Wins and total matches for different cluster pairings, 2011

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Weaker opponent

Cluster 1 108/201 110/320 20/119 19/121 0/761 (0.0000)
Cluster 2 362/416 610/960 105/354 175/394 362/2124 (0.1704)
Cluster 3 197/197 458/500 264/418 191/251 846/1366 (0.6193)
Cluster 4 179/191 373/454 111/245 163/258 552/1148 (0.4808)
Table 10. Wins and total matches for different cluster pairings, 2012

Cluster 1 Cluster 2 Cluster 3 Weaker opponent

Cluster 1 507/807 89/374 272/567 0/1748 (0.0000)
Cluster 2 569/607 622/967 518/578 1087/2152 (0.5051)
Cluster 3 435/611 119/381 358/572 435/1564 (0.2781)

Table 11. Wins and total matches for different cluster pairings, 2013


