
CTC - Correlating Tree Patterns for Classification

Albrecht Zimmermann Björn Bringmann

Machine Learning Lab, Albert-Ludwigs-University Freiburg,
Georges-Köhler-Allee 79, 79110 Freiburg, Germany

E-mail: {azimmerm,bbringmann}@informatik.uni-freiburg.de

Abstract

We present CTC, a new approach to structural classifica-
tion. This approach uses the predictive power of tree pat-
terns correlating with the class values. It combines state-of-
the-art tree mining with sophisticated pruning techniques
to find the k most discriminative pattern in a dataset. In
contrast to existing methods, CTC uses no heuristics and
the only parameters to be chosen by the user are the max-
imum size of the rule set and a single, statistically well
founded cut-off value. The experiments show that CTC clas-
sifiers achieve good accuracies while the induced models
are smaller than those of existing approaches, facilitating
better comprehensibility.

1 Introduction

Classification is one of the most important data mining
tasks. Whereas traditional approaches have focused on flat
representations, using feature vectors or attribute-value rep-
resentations, there has recently been a lot of interest in more
expressive representations, such as sequences, trees and
graphs [4, 5, 1, 13, 3]. Motivations for this interest include
drug design, since molecules can be represented as graphs
or sequences. Classification of such data paves the way to-
wards drug design on the screen instead of extensive experi-
ments in the lab. Regarding documents, XML, essentially a
tree-structured representation, is becoming ever more pop-
ular. Classification in this context allows for more efficient
dealing with large amounts of electronic documents.

Existing approaches to classify structured data (such as
trees and graphs) can be categorized into various categories.
They differ largely in the way they derive structural features
for discriminating between examples belonging to the dif-
ferent classes.

A first category can be described as a pure proposition-
alization approach. The propositionalization approach typ-
ically generates a very large number of features and uses an

attribute-value learner to build a classifier. The construction
of the used features requires the user-defined some parame-
ters (such as the minimum frequency), which are often diffi-
cult to determine a priori, but have a profound effect on the
resulting accuracies. Moreover, the resulting classifiers are
often hard to understand due to the large number of features
used which are possibly also combined in a non-trivial way
(e.g. in a SVM).

A second class of systems, e.g. the XRULES classifier
[13], can be described as the association rule approach.
Even though the resulting rules often yield high predic-
tive accuracy, the number of generated rules typically ex-
plodes, making the resulting classifier difficult to under-
stand. Moreover, as in the propositionalization approach,
the user has to specify a number of parameters, which is
often non-trivial.

Both the association rule and propositionalization ap-
proaches consider feature generation and classification in
two independent steps. Indeed, features are first gener-
ated, and then post-processed, possibly using a proposi-
tional learner. Integrated approaches form a third category
of systems that integrates feature construction with classi-
fication. This third category includes inductive logic pro-
gramming systems, such as FOIL [11] and PROGOL [9],
as well as the DT-GBI approach of Motoda et al. [3].
For those approaches to be computationally feasible they
have to perform heuristic search, possibly generating non-
optimal features. The ILP and DT-GBI also share the need
to specify a number of user-defined parameters.

In this work we present an approach called CTC that is
situated between the association rule technique and inte-
grated systems. It is motivated by recent results on finding
correlated patterns, allowing to find the k best, i.e. most dis-
criminating, features according to a convex maximization
criterion such as χ2 [8]. Rather than generating the com-
plete set of patterns satisfying a given criterion and post-
processing them, or searching for good features in a heuris-
tic manner, CTC computes the set of k best patterns by em-
ploying a branch-and-bound search. Pruning is performed

1

w.r.t. the kth best pattern seen so far and/or a user-specified
cut-off value. The resulting ordered rule set can be used
directly for classification using different rule conflict reso-
lution strategies. There are several advantages over existing
techniques: CTC guarantees that the best rules are found,
setting it apart from heuristic solutions such as FOIL, PRO-
GOL, and DT-GBI. Only two parameters have to be speci-
fied (the maximum size of the rule set and the significance
level), decoupling the success of the classifier from deci-
sions about parameters influencing the search process. The
resulting classifiers are also far less complex than classifiers
built with associative classification approaches such as the
XRULES approach while attaining the similarly good accu-
racies.

The paper is organized as follows: in Section 2 we de-
scribe earlier work on the topic and relate it to our approach;
in Section 3, we discuss technical aspects of our method and
outline our algorithm; in Section 4, the experimental evalu-
ation is explained and results are discussed. We conclude in
Section 5 and point to future work directions.

2 Related Work

Structural classification has been done with different
techniques. Firstly, there are several propositionalization
approaches, e.g. [5] and [1]. While details may differ, the
basic mechanism in these approaches is to first mine all pat-
terns that are unexpected according to some measure (typi-
cally frequency). Once those patterns have been found, in-
stances are transformed into bitstrings, denoting occurrence
of each pattern. Classifiers are trained using this bitstring
representation. While these approaches can show excellent
performance and have access to the whole spectrum of ma-
chine learning techniques there are possible problems. Ob-
viously the decision which patterns to consider meaningful,
e.g. by fixing a minimum frequency, will have an effect on
the quality of the model. The resulting feature set will prob-
ably be very large, requiring pruning of some kind. Finally,
interpretation of the resulting model is not easy, especially
if the classifier is non-symbolic, e.g. a SVM.

A second group of approaches is similar to the associa-
tive classification approach [7]. Again, unexpected patterns
are mined but each of them has to associate with the class
value. An example is Zaki et al.’s XRULES classifier. Each
pattern is considered as a rule predicting its class. Usually,
the resulting rule set has to be post-processed and/or a con-
flict resolution technique employed. As in the proposition-
alization techniques, the choice of constraints under which
to mine is not straight-forward and choosing the resolution
technique can strongly influence performance, as has been
shown e.g. in [10, 14]. Additionally, the resulting classifier
often consists of thousands of rules, making interpretation
by the user again difficult.

Finally, there exist integrated techniques that do not mine
all patterns, but generates features during classifier con-
struction. Since structural data can be represented in pred-
icate logic, techniques such as FOIL [11] and PROGOL [9]
can be used for the task of structural classification. While
ILP approaches are elegant and powerful, working on large
datasets can be too computationally expensive. One way
to handle this is to define a language bias that restricts the
hypothesis space. Selecting the right language bias is not
a straight-forward decision and can have a strong effect on
the resulting classifier. Approaches such as DT-GBI [3], on
the other hand, construct the features used, e.g. for the tests
of the induced decision tree, by graph-mining. These ap-
proaches have in common that feature induction is usually
done in a heuristic way, often by greedy maximization of
a correlation measure during beam search. Responsibility
of deciding the parameters governing this search is placed
upon the user. For instance, in FOIL decisions have to be
made on the beam size and the maximum number of literals
that are allowed in the rule body. Similarly, DT-GBI re-
quires the user to specify beam size, the maximum number
of specializations in each node, and possibly a minimum
frequency that should not be violated. As Motoda et al.
show in their work [3], finding the right value for the beam
size and the maximum number of specializations requires
essentially a meta-search in the space of possible classifiers.

In contrast, only two parameters have to be specified for
CTC. The first one is the maximum rule size, giving the
user an intuitive way to decide on the complexity of the
resulting model. The second one, the cut-off value below
which to not consider rules interesting anymore, is optional.
By setting this value the user can enforce the significance
of included rules. By basing it on e.g. the p-values for the
χ2-distribution, the user has a well-founded guide-line for
choosing this value.

3 Methodology

In this section we explain the pattern matching notion
used by the CTC approach, discuss upper bound calculation,
the main component of the principled search for the most
discriminating pattern, and formulate the algorithm itself.

3.1 Matching embedded Trees

Several types of structured data exist, such as graphs,
trees and sequences. In this paper we will focus on tree
structured data, like XML, only. Thus, we need a notion for
matching tree structured data.

A rooted k-tree t is a set of k nodes Vt where each
v ∈ Vt, except one called root, has a parent denoted
π(v) ∈ Vt. We use λ(v) to denote the label of a node and
an operator ≺ to denote the order from left to right among

2

Figure 1. The tree t is embedded in t′.

the children of a node. The transitive closure of π will be
denoted π∗. Let L be a formal language composed of all
labeled, ordered, rooted trees and D ⊂ L a database. To
count trees t ∈ D containing a pattern p we define a func-
tion dt : L → {0, 1} to be 1 iff p matches the tree t and 0
otherwise. The frequency of p in D can then be defined as
σD(p) =def Σt∈Ddt(p).

Several notions of tree matching exist. As in Zaki et al.’s
work [13] we used a notion called tree embedding which is
defined as follows:

Definition 1
A tree t is embedded in a tree t′ iff a mapping ϕ : Vt → Vt′

exists such that

∀u, v ∈ Vt : λ(u) = λ(ϕ(u))∧
u ≺ v ⇔ ϕ(u) ≺ ϕ(v)∧
v ∈ π∗(u)⇔ ϕ(v) ∈ π∗(ϕ(u)).

An example of an embedded tree is given in Figure 1.
We use tree embedding to compare our approach with

Zaki et al.’s technique. This notion is more flexible than
simple subtrees and the mining process is still efficient. In
general, other matching notions (see [4]) and even differ-
ent representations could be used with CTC. This includes
not only other notions of matching trees, but also graphs,
sequences etc., since the general principles of our approach
apply to all domains.

3.2 Correlation Measures

CTC aims at finding a compact set of tree patterns
whose occurrence in a tree allows to reliably predict the
tree’s class. One approach to do this is the one chosen in
XRULES, namely to mine all tree patterns that occur fre-
quently in the trees belonging to a given class and have a
certain minimum strength (e.g. confidence) when evaluated
on the entire dataset.

There are a few problems with this framework though.
The first one lies in the fact that it is difficult to choose a
“good” minimum support. If the threshold is set too high,
valuable patterns will probably be missed by the mining
process. If it is set too low, the resulting pattern set grows
too large and probably includes many uninformative pat-
terns that have to be removed in a post-processing step.

c1 c2
T yT xT − yT xT
¬T m− yT n−m− (xT − yT) n− xT

m n−m n

Table 1. A Contingency Table

Also, if confidence is used to assess the quality of rules as in
the XRULES classifier, it tends to reward patterns occurring
together with the majority class.

To alleviate these problems, we use correlation measures
for selecting discriminative patterns. A correlation measure
compares the expected frequency of the joint occurence of a
pattern and a certain class value to the observed frequency.
If the resulting value is larger than a certain threshold then
the deviation from the independence assumption is consid-
ered statistically significant enough to assume a causal rela-
tionship between the pattern and the class label.

Example 1 Consider a database consisting of 50 in-
stances, half of which are labeled with class label c1, the
other half with class label c2. Assume furthermore a pat-
tern T which occurs with support 10 in the database. If
eight of the ten instances including T are labeled with c1,
then the χ2 measure would give this deviation a score of
4.5. Information Gain, that quantifies only the changes in
entropy w.r.t. T , would give it a score of 0.079.

We organize the observed frequencies in a contingency
table, cf. Table 1. Since the two variables xT and yT are
sufficient for calculating the value of a correlation measure
on this table, we will view these measures as real-valued
functions whose domain is N2 for the remainder of this pa-
per. While we restrict ourselves to binary class problems in
this work, a multi-class problem can easily be transformed
into a set of two-class problems, making our technique ap-
plicable to these settings.

While calculating the correlation value of a given pattern
is relatively simple, directed search towards better solutions
is somewhat more difficult since correlation measures have
no desirable properties such as anti-monotonicity. But if
they are convex it is possible to calculate an upper bound
on the score that can be achieved by specializations of the
current pattern T and thus to decide whether this branch in
the search tree should be followed.

3.3 Convexity and Upper Bounds

It can be proved that χ2 and Information Gain are con-
vex. For the proofs of the convexity of χ2 and Information
Gain we refer the reader to [8].

Convex functions take their extreme values at the points
forming the convex hull of their domain D. Consider the

3

l−a

f(l)

f(l−a)

k

f(k)

l

Threshold

f(c)

x

y

Figure 2. A Convex Function

c ,cu u

y

x0,0

l l

x −y ,0

x ,yy ,y
T

T

c ,c −(x −y)

T T

T

T T

x

y

T

T T

Figure 3. Convex Hull of σ’s Domain

graph of f(x) in Figure 2. Assume the function’s domain is
restricted to the interval [k, l] which also makes those points
the convex hull of D. Obviously, f(k) and f(l) are locally
maximal, with f(l) being the global maximum. Given the
current value of the function at f(c) and assuming that it is
unknown whether c increases or decreases, evaluating f at
k and l allows to check whether it is possible for any value
of c to put the value of f over the threshold.

For the two-dimensional case, the extreme values are
reached at the vertices of the enclosing polygon (in our case
the four vertices of the parallelogram in Figure 3). This par-
allelogram encloses all possible tuples 〈x′T , y′T 〉 that corre-
spond to occurence counts of specializations of the current
pattern T . The tuple 〈0, 0〉 corresponds to a pattern that
does not occur in the dataset and therefore does not have
to be considered in calculating the upper bound. The tu-
ple 〈xT , yT 〉 corresponds to a valid pattern, but in the con-
text of upper bound calculation denotes a specialization of
the current pattern T that is equally good in discriminative
power. Following the Occam’s Razor argument, that gen-
eral structures have a higher expected probability of being
effective on unseen data, we prefer those and thus disre-
gard this tuple as well. Thus the upper bound on σ(T ′)
is ubσ(T) = max{σ(yT , yT), σ(xT − yT , 0)}. For an in-
depth discussion of upper bound calculation we refer the
reader to [8, 14]

Example 2 Continuing our example from the previous
page, this means that for σ being χ2, ubχ2(T) =
max{9.52, 2.08}, given x = 10, y = 8. Since 9.52 is larger
than χ2(xT , yT) = 4.5 there might be a specialization of T

that discriminates better than T itself and therefore explor-
ing this search path is worthwhile.

While this upper bound calculation is correct for, e.g.
Information Gain, an additional problem w.r.t. χ2 lies in
the fact that the information provided by the score of χ2 is
not always reliable. Statistical theory says that for a contin-
gency table with one degree of freedom, such as the one we
are considering here, the expected number of occurrences
has to be greater than or equal to 5 for theχ2 score to be reli-
able. This means that a χ2-value on 〈yT , yT 〉 or 〈xT−yT , 0〉
is not necessarily reliable. Thus, upper bound calculation
has to be modified to achieve reliability. Based on the size
of the class and of D, upper and lower bounds cu, cl on x′T
can be calculated and the values of the tuples adjusted ac-
cordingly. Two of the new vertices are shown as 〈cu, cu〉
and 〈cl, cl − (xT − yT)〉.

3.4 The CTC algorithm

The CTC algorithm (shown as Algorithm 1) constructs
an ordered list of at most k rules, all of which have a sig-
nificance value equal to or above the user-specified cut-
off value τuser . During mining, only patterns that have
a chance of exceeding both τuser and the kth-best signifi-
cance score seen so far are specialized. Since correlation
measures are neither monotone nor anti-monotone, CTC
calculates an upper bound on the value specializations of
a pattern can achieve and prunes the search space using this
upper bound and the kth-best correlation score calculated
so far. In this way, we separate the success of the technique
from user decisions about the search strategy. The only de-
cisions that a user has to make are the ones w.r.t. the maxi-
mal size of the rule list and the cut-off value for inclusion in
the rule list. To this effect, a minimum value for the score
of the correlation measure has to be specified, which can
be based on statistical theory, thus giving the user a better
guidance for making this decision.

Starting from the most general (empty) tree pattern, we
canonically enumerate all tree patterns. The way this canon-
ical expansion is performed has two benefits: Firstly, that
each pattern is enumerated only once and secondly, that
only patterns are enumerated that have a chance of exceed-
ing the current threshold. For inclusion in the solution set
S, the score of a pattern has to exceed the threshold τ . At
the start of the algorithm this is the user-supplied cut-off
value but as S is populated, the threshold is raised to the
kth-best score seen so far. The possibility of a pattern ex-
ceeding this threshold in the future is assessed by checking
the upper bound on future scores ubσ against τ . Once the
k best patterns have been found, each pattern is treated as a
rule predicting the more frequent class among the training
instances covered by it. In case of a tie, the majority class
in the dataset is predicted.

4

Algorithm 1 The CTC algorithm
σ - correlation measure, τuser - cut-off value, k - maxi-
mum size of rule set

1: S = ∅
2: ENUMERATEK-BESTSUBTREES(S,>, τuser, σ)
3: return S

ENUMERATEK-BESTSUBTREES(S, t, τ, σ)
1: for all canonical expansion t′ of t do
2: if σ(t′) ≥ τ then
3: S = S ∪ {t′}
4: if |S| > k then
5: S = S \ arg mins∈S σ(s)
6: τ = mins∈S σ(s)
7: if ubσ(t′) ≥ τ then
8: ENUMERATEK-BESTSUBTREES(S, t′, τ, σ)

3.5 Discussion

CTC has several desirable properties. Firstly, by allow-
ing the user to cap the size of the rule set, users have a intu-
itive tool for deciding which complexity they still consider
useful. Secondly, by using correlation measures for quanti-
fying the quality of patterns, we give the user a more solid
theoretical foundation on which to base decisions about
which found patterns to consider significant and use in the
rule set. Thirdly, we avoid heuristics that force the user to
decide on the values of parameters that could have a severe
impact on the resulting model’s quality. Contrary to heuris-
tic approaches, we can guarantee that really the k best rules
are found. Finally, by using the upper bounds on correlation
measures for pruning during the mining process, we reduce
the amount of patterns mined that are not included in the
final classifier and avoid an additional post-processing step.

CTC mines a set of rules according to some a priori de-
fined criterion and uses them in a classifier, combining them
using some classification strategy. This is a characteristic
it shares with associative classification approaches and that
sets it apart from integrated approaches that generate fea-
tures during classifier construction. But unlike associative
classifiers is bases the selection of rules not on frequency
but on a measure quantifying their discriminative power,
similarly to the Information Gain or Foil Gain measure.

3.6 Classification Strategies

Once the rule set has been computed, the question is how
to use it in the actual classification process. Many strategies
can be found in the literature of which we describe four here
that we used in the experiments.

If the rule set is ordered, as is the case with the rule set
induced by CTC, the simplest strategy is to use the first rule
matching an instance for classification. The rationale be-
hind is that highly ranked rules have either larger cover-
age or stronger predictive power than lower ranked ones.
The strategy is often referred to as using a decision list
(DL). A second strategy calls for collecting all rules that
match a given instance and combining their predictions.
In the least complex version, each rule is given the same
weight and for each class the number of rules predicting
this class are counted. The class receiving the most votes
is predicted. The common name for this strategy is major-
ity vote (MV). A possible problem with this approach lies
in the fact that rules that are ranked near the bottom are
considered equally important to rules near the top, which
is counter-intuitive. To alleviate it, discounting of rules
becomes necessary. We used two such approaches in our
experiments that both come from the field of using asso-
ciative patterns for classification [6, 13]. One is the aver-
age strength method (AvgStr), introduced by Zaki et al. in
[13]. For each class, the strength, e.g. confidence, w.r.t.
this class of the rules matching the instance is added up and
normalized by dividing by the number of rules. The class
with highest average strength is predicted unless no class
achieves higher than default strength in which case the ma-
jority class is predicted. Finally, the weighted χ2 heuristic
(WChi), introduced by Han et al. [6] discounts the χ2 value
for each rule against the maximum χ2 value that rule could
have attained. In all cases the majority class is predicted if
no rule matches the instance to be classified.

4 Experimental Evaluation

For the experimental evaluation, we compared our ap-
proach to XRULES and an integrated approach introduced
in earlier work [2] on the XML data used in Zaki et al.’s
publication [13].

The integrated approach, TREE2, induces a binary deci-
sion tree. In each inner node the occurrence of a discrimi-
nating patterns in the data is tested. Pattern mining for the
tests is based on the same principles as in the CTC classifier,
namely the best (most discriminative) pattern in the sub-
set of data corresponding to the node is found by optimal
branch-and-bound search. Tree growth is stopped based on
a single cut-off value, similar to the parameter τuser in CTC.

Basing selection of rules on a correlation measure and
inclusion on a well-founded cut-off value should lead to
the induction of rule sets with high predictive accuracy that
are smaller than those produced by XRULES. Since TREE2

generates features when they are needed, the resulting mod-
els will likely be smaller than those of CTC but the use of
the larger rule sets and strategies for combining those rules
could lead to better performance.

5

DB #Sessions edu other %edu %other
CSLOG1 8074 1962 6112 24.3 75.7
CSLOG2 7409 1687 5722 22.8 77.2
CSLOG12 13934 2969 10965 21.3 78.7
CSLOG3 7628 1798 5830 23.6 76.4

Table 2. Characteristics of Datasets (taken
from [13])

Setting CTC XRULES TREE2 CTCV al
CSLOG1-2 592 28911 66 130
CSLOG2-3 497 19098 57 150
CSLOG12-3 981 29098 103 170
CSLOG3-1 546 31661 60 220

Table 3. Size of the induced Models for CTC,
XRULES, and TREE2

The XML data used in our experiments are log files from
web-site visitors’ sessions. They are separated into three
weeks (CSLOG1, CSLOG2, and CSLOG3) and each ses-
sion is classified based on whether the visitor came either
from an .edu domain or from any other domain. Charac-
teristics of the datasets are shown in Table 2. For the mining
process we set the maximum size of the rule set to 1000 and
the cut-off value to 3.84, the 90%-p value for the χ2 distri-
bution. For the comparison with TREE2 we built decision
trees with the same cut-off value. As we showed in ear-
lier work ([14, 2]), using a different correlation measure,
e.g. Information Gain, gives rise to more complex classi-
fiers that do not perform significantly better. In each setting
we used one set of data for training and another one for test-
ing. Following Zaki’s notation, CSLOGx-y denotes that we
trained on set x and tested on set y.

Table 3 shows the complexity of the resulting models.
The first column lists the setting for which the correspond-
ing model was induced. The second column reports the
number of rules mined by CTC for the parameter setting
given above, column three shows the number of rules for
XRULES, and the fourth column the number of inner nodes
for TREE2. It is interesting to note that for all four settings
the dataset supports less than 1000 rules that pass the 90%
significance test. As expected, the size of the CTC’s rule set
is larger than the tree size of the integrated approach. On the
other hand, XRULES produces rule sets that are two orders
of magnitude larger than those induced by CTC.

To explore the effect that varying the number of rules
used for classification has on predictive accuracy, we eval-
uated subsets of the rule sets induced by CTC on the whole
test sets. For those subsets the l highest-ranked rules in-
duced for a particular setting were selected. The smallest

 0.165

 0.17

 0.175

 0.18

 0.185

 0.19

 0 50 100 150 200 250 300 350 400 450 500 550 600

E
rr

or
 R

at
e

on
 T

es
ts

et

Size of Rule Set

MV
DL

AvgStr
WChi

Figure 4. Error rates for different classifica-
tion strategies for the CSLOG1-2 setting

 0.16

 0.165

 0.17

 0.175

 0.18

 0.185

 0.19

 0.195

 0.2

 0.205

 0 50 100 150 200 250 300 350 400 450 500

E
rr

or
 R

at
e

on
 T

es
ts

et

Size of Rule Set

MV
DL

AvgStr
WChi

Figure 5. Error rates for different classifica-
tion strategies for the CSLOG2-3 setting

subset had size 10 and we increased l in increments of 10 up
to the total number of rules induced for the respective set-
ting. Figures 4-7 show the resulting error rates for the four
different settings. In each diagram, MV denotes the major-
ity voting strategy, DL the decision list approach, AvgStr
that Zaki et al.’s average strength heuristic was used, and
WChi the use of the weighted χ2 heuristic introduced by
Han et al.. It is noticeable that using less than 100 rules
causes relatively high error rates while significantly enlarg-
ing the rule set past 200 rules causes error rates to increase
again. This means that lower-ranked rules are very likely
the result of overfitting.

By using validation sets one can determine the size of
the rule set giving best performance. We used half of the
corresponding test sets as validation sets. The resulting
(best) amount of rules for each setting is reported in the
last column of Table 3, denoted by CTCV al. By using the
respective number of rules for each setting and classifying

6

 0.155

 0.16

 0.165

 0.17

 0.175

 0.18

 0.185

 0.19

 0.195

 0.2

 0.205

 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

E
rr

or
 R

at
e

on
 T

es
ts

et

Size of Rule Set

MV
DL

AvgStr
WChi

Figure 6. Error rates for different classifica-
tion strategies for the CSLOG12-3 setting

 0.165

 0.17

 0.175

 0.18

 0.185

 0.19

 0.195

 0.2

 0.205

 0.21

 0 50 100 150 200 250 300 350 400 450 500 550

E
rr

or
 R

at
e

on
 T

es
ts

et

Size of Rule Set

MV
DL

AvgStr
WChi

Figure 7. Error rates for different classifica-
tion strategies for the CSLOG3-1 setting

the other half of the test set we arrive at predictive accuracy
estimates that we report in Table 4.

As can be seen, CTC performs well in all settings. For
the first setting, CSLOG1-2, the differences between the
different classifiers (XRULES, the four variants of CTC, and
TREE2) are not significant at the 5% level. For the set-
tings CSLOG2-3 and CSLOG12-3, XRULES and the first
three CTC variants (MV, DL, AvgStr) are significantly bet-
ter than TREE2 while the difference between them is not
significant. CTC with the weighted χ2 heuristic performs
significantly worse than XRULES and is not significantly
better than TREE2. Finally for the last setting, CSLOG3-1,
the rule-based classifiers outperform TREE2 while there is
no significant difference between them.

As these results show, the increase in complexity from
TREE2 to CTC (two to four times as many patterns) is ac-
companied by an increase in performance while XRULES
does not gain an advantage from using more than 100 times
as many rules as CTC. This is particularly obvious when
comparing XRULES’ results to the results of CTC using the
average strength strategy, which is the strategy employed in
XRULES as well. It is interesting to see that the weighted
χ2 heuristic does not perform as strongly as the other strate-
gies and that the decision list produces results that are very
similar to the average strength method. While majority vote
performs also well for the rule sets found by using a valida-
tion set, Figures 4 and 5 show that the danger of overfitting
is more pronounced for this technique.

5 Conclusion and Future Work

In this work, we presented CTC, a rule-based approach
to structural classification. Using an optimal branch-and-
bound search, the algorithm finds the k most discriminating
patterns in a data set and uses them for prediction. This al-
lows the user to separate the success of the classifier from
decision about the search process, unlike in approaches that
use heuristics. Basing the criterion for inclusion in the rule
set on statistically well founded measures rather than ar-
bitrary thresholds whose meaning is somewhat ambiguous
gives the user better guidance for selecting this parameter. It
also alleviates the main problem of the support-confidence
framework, namely the generation of very large rule sets
that are incomprehensible to the user and possibly include
uninformative rules w.r.t. classification.

As the experiments show, CTC classifiers are effec-
tive while being less complex than existing rule-based ap-
proaches. By having users supply a parameter restricting
the maximal size of the induced rule set, we give them the
opportunity to build models that they still consider compre-
hensible. Furthermore, evaluating the subset of the induced
rule set consisting of the l highest-ranking rules on a vali-
dation set and selecting the l giving the best results offers a

7

Setting XRULES CTCMV CTCDL CTCAvgStr CTCWChi TREE2

CSLOG1-2 82.99 83.23 83.31 83.31 83.01 82.47
CSLOG2-3 84.61 83.95 83.90 83.92 82.83 81.91
CSLOG12-3 85.30 84.27 84.24 84.29 83.53 82.58
CSLOG3-1 83.81 83.50 83.77 83.63 83.53 81.31

Table 4. Predictive Accuracy for XRULES, different classification strategies for CTC, and the TREE2

classifier

straight-forward way of tuning the classifier’s performance.
So far, we have restricted ourselves to a single represen-

tation, trees, a single measure, and evaluated four possible
classification strategies. Future work will include evaluat-
ing other correlation measures and applying our approach
to different representations. Finally, selecting the subset of
rules to actually use in the classifier is done heuristically so
far. To base model construction on optimal search seems to
be a promising research direction.

Acknowledgments

We would like to thank Mohammed J. Zaki for providing
the datasets and the XRULES algorithm. Furthermore, we
would like to thank Andreas Karwath, Kristian Kersting,
and Luc De Raedt for interesting discussions and comments
to our work.

References

[1] B. Bringmann and A. Karwath. Frequent SMILES. In
Lernen, Wissensentdeckung und Adaptivität, Workshop GI
Fachgruppe Maschinelles Lernen, part of LWA 2004, 2004.

[2] B. Bringmann and A. Zimmermann. TREE2 - Decision trees
for tree structured data. Submitted to PKDD ’05.

[3] W. Geamsakul, T. Matsuda, T. Yoshida, H. Motoda, and
T. Washio. Performance evaluation of decision tree graph-
based induction. In G. Grieser, Y. Tanaka, and A. Ya-
mamoto, editors, Discovery Science, pages 128–140, Sap-
poro, Japan, Oct. 2003. Springer.

[4] P. Kilpeläinen. Tree Matching Problems with Applications
to Structured Text Databases. PhD thesis, University of
Helsinki, 1992.

[5] S. Kramer, L. De Raedt, and C. Helma. Molecular feature
mining in HIV data. In F. Provost and R. Srikant, editors,
Proc. KDD-01, pages 136–143, New York, Aug. 26–29
2001. ACM Press.

[6] W. Li, J. Han, and J. Pei. CMAR: Accurate and efficient
classification based on multiple class-association rules. In
N. Cercone, T. Y. Lin, and X. Wu, editors, Proceedings
of the 2001 IEEE International Conference on Data Min-
ing, pages 369–376, San José, California, USA, 2001. IEEE
Computer Society.

[7] B. Liu, W. Hsu, and Y. Ma. Integrating classification and
association rule mining. In R. Agrawal, P. E. Stolorz, and
G. Piatetsky-Shapiro, editors, KDD, pages 80–86, New York
City, New York, USA, Aug. 1998. AAAI Press.

[8] S. Morishita and J. Sese. Traversing itemset lattices with
statistical metric pruning. In PODS, pages 226–236, Dallas,
Texas, USA, May 2000. ACM.

[9] S. Muggleton. Inverse entailment and PROGOL. New Gen-
eration Computing, 13(3&4):245–286, 1995.

[10] S. Mutter, M. Hall, and F. Frank. Using classification to eval-
uate the output of confidence-based association rule mining.
In G. I. Webb and X. Yu, editors, Australian Conference
on Artificial Intelligence, pages 538–549, Cairns, Australia,
Dec. 2004. Springer.

[11] J. R. Quinlan. Learning logical definitions from relations.
Machine Learning, 5:239–266, 1990.

[12] E. Suzuki and S. Arikawa, editors. Discovery Science, 7th
International Conference, DS 2004, Padova, Italy, October
2-5, 2004, Proceedings, Padova, Italy, Oct. 2004. Springer.

[13] M. J. Zaki and C. C. Aggarwal. XRules: an effective struc-
tural classifier for XML data. In L. Getoor, T. E. Senator,
P. Domingos, and C. Faloutsos, editors, KDD, pages 316–
325, Washington, DC, USA, Aug. 2003. ACM.

[14] A. Zimmermann and L. De Raedt. Corclass: Correlated
association rule mining for classification. In Suzuki and
Arikawa [12], pages 60–72.

8

