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Abstract

Constrained pattern mining extracts patterns based on
their individual merit. Usually this results in far more pat-
terns than a human expert or a machine learning technique
could make use of. Often different patterns or combinations
of patterns cover a similar subset of the examples, thus be-
ing redundant and not carrying any new information. To re-
move the redundant information contained in such pattern
sets, we propose a general heuristic approach for selecting
a small subset of patterns.

We identify several selection techniques for use in this
general algorithm and evaluate those on several data sets.
The results show that the technique succeeds in severely re-
ducing the number of patterns, while at the same time ap-
parently retaining much of the original information. Addi-
tionally the experiments show that reducing the pattern set
indeed improves the quality of classification results. Both
results show that the approach is very well suited for the
goals we aim at.

1. Introduction

Pattern search is one of the main topics in data mining.
In the last years different types of pattern languages were
developed in order to be able to deal with the ever-present
challenge of finding new and hopefully valuable representa-
tions for all kind of data. Most algorithms developed handle
the usually computationally intensive task in a decent way
enabling us to extract millions of patterns from even small
data sets. These patterns are then presented to the user or
they are used as features such that each instance of the orig-
inal database can be converted into a binary vector, each bit
encoding the presence or absence of the pattern.

Due to the fact that interestingness (i.e. constraint sat-

isfaction) of patterns is evaluated for each pattern individ-
ually, the amount of patterns to be considered by a user is
often too large. Furthermore, when presenting the binary
vector data to a machine learning technique, an overabun-
dance of features does not help in the learning task, possibly
even ”confusing” the algorithm, leading to overfitting.

The aim of our work is to reduce the set of patterns re-
turned by a data mining operation to a subset that is small
enough to be inspectedby a human user. To be of maximal
benefit to the user this set should show little redundancy
while retaining as much information as possible encoded
in the full pattern set. In our approach, the information of
a pattern set is determined by the partition it induces on
the examples, with all examples containing the same set of
patterns belonging to one and the same block. Thus, in-
formation is obtained from the composition of all patterns.
This is in contrast to e.g. the notion of sets of closed [12]
patterns, which only takes care that no two individual pat-
terns induce the same partition. It does not take into account
complementary information, i.e. patterns that are mutually
exclusive. Additionally, especially on dense data sets the
number of closed patterns is still significantly larger than
anything humans can be reasonably expected to peruse.

Since the high amount of patterns leads to a very large
search space of possible subsets, we develop a heuristic
technique for solving the problem. In order to accommo-
date different notions of how to traverse the set and how to
select patterns, we keep the main algorithm rather general.
Based on our intuition about redundancy between patterns
we develop several selection measures and combine them
with straight-forward ordering strategies. When evaluated
on several data sets the techniques reduce the set of closed
patterns severely.

The rest of paper is structured as follows: in the next
Section we introduce notions used throughout this work and
describe the general formulation of our technique. In Sec-
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tion 3 we describe several instantiations of the general algo-
rithm, motivating the different selection strategies. In Sec-
tion 4 we perform experiments on several data sets, showing
the effectiveness of the used selection techniques, and com-
paring and discussing the resulting reduced pattern sets. In
Section 5 we discuss related work and finally, we conclude
in Section 6.

2. The General Algorithm

As stated above, the main goal of our work is present-
ing both human user and machine learning technique with
a set of patterns that is small enough to be easily processed.
Small size is not a virtue in itself, however, if there is little
information encoded in the pattern set. Thus it is important
that much of the characteristics of the data described by the
complete set of patterns is retained, and it is desirable that
the redundancy between patterns in the set is low.

To achieve selection of patterns beyond that done in the
mining operation, additional knowledge is required. The
cheapest and often only form of background knowledge
available is the database T which the patterns were ex-
tracted from. By evaluating subsets of patterns jointly on
this database, we exploit the knowledge the mining opera-
tion itself did not use.

Hence, our goal is the following: Given a set S of pat-
terns pi, the database T , and a redundancy measure Φ, se-
lect a subset S

∗ ⊆ S, such that S
∗ satisfies the following

requirements:

1. |S∗| is small, such that a human expert could inspect it.

2. members of S
∗ have low redundancy w.r.t. T accord-

ing to Φ.

3. members of S
∗ describe characteristics of T .

We will concretize these requirements in the next sec-
tion. To give a formal description of the general technique,
we introduce the following notions:

2.1. Notions

Let each pattern p be associated with a function p : T →
{true, false}. We define p(t) = true if p matches t, and
p(t) = false otherwise. In general a pattern does not have
values as such but can only be present or absent. Associ-
ating a pattern with this boolean function does allow us to
consider each pattern as a binary feature though.

A set of patterns S = {p1, . . . , pn} is called a pattern
set. Given a pattern set S we define an equivalence relation
∼S on the set T of transactions as

∼S = {(t1, t2) ∈ T × T | ∀p∈S p(t1) = p(t2)}

Thus, two transactions are considered to be equivalent un-
der S if they share exactly the same patterns. Using the
equivalence relation ∼S the partition or quotient set of T
over S is defined as

T / ∼S=
⋃

x∈T
{a ∈ T | a ∼S x},

with the equivalence classes also called blocks.
To get an intuition why partitions are central to our tech-

nique, consider the following: For a machine learning algo-
rithm a subset S

∗ that induces the same partition as S will
be of the same usefulness as the complete set since the sep-
arability of instances is equally well possible. The actual
syntactical composition and support of the patterns are not
of interest in this case.

For a human user with elaborated knowledge about the
domain the situation might be somewhat different, but by
defining the total order < ⊂ S × S in which to process pat-
terns the user can control to some extend which patterns are
considered for selection. Additionally, considering a sub-
set of patterns that induces a partition on the entire data is
preferable to browsing hundreds or even thousands of pat-
terns or looking through the k most interesting which pos-
sibly contain more or less the same information.
Furthermore, we define a measure Φ as

Φ(T , S∗, p) → [0, 1] ⊂ R

The measure is supposed to rate the value of adding p to S
∗.

The higher the value of Φ, the more valuable it would be
adding p to S

∗.
To motivate the usage of an additional measure, consider

that the minimal number of patterns needed to induce a par-
tition is log2 |T / ∼S∗ |. While this ideal number will hardly
be reachable, it is still necessary to rate patterns regard-
ing their contribution towards approaching it since this also
minimizes redundancy between (combinations of) patterns.

2.2. The idea

Given the goals stated above and the intuition about
meaningful pattern sets we have given in the preceding sec-
tion, our aim is now to select a subset S

∗ ⊂ S which comes
close to recovering the partition induced by S while being
of low cardinality.

Since the number of patterns is rather high, the brute
force approach of testing any possible subset S

∗ ⊆ S will
quickly become infeasible. A possible solution to this lies in
limiting the size of S

∗ to a user-defined k [6]. The choice of
this k is not straight-forward though, and furthermore not,
as in the approach presented here, governed by the data.

Using the definitions given above we can now give a
rather general heuristic algorithm to compute S

∗ given S,
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T , the order <, Φ, and some threshold t ∈ [0, 1] ⊂ R. It is
shown as Algorithm 1.

Algorithm 1 The general algorithm

1: S
∗ = {p1}

2: for i = 2 to |S| do
3: if |T / ∼(S∗∪pi) | > |T / ∼S∗ | then
4: if Φ(T , S∗, pi) ≥ t then
5: S

∗ = S
∗ ∪ {pi}

6: return S
∗

The algorithm iterates over the patterns in S in the order
given by <. In each step the partition induced by S

∗ ∪pi

is created and compared to the partition induced by S
∗. If

there is no change, the pattern is rejected, thus reducing re-
dundancy (subgoal 1). If there is change, the measure Φ is
evaluated against the threshold and if the threshold is passed
the pattern chosen.

To give some intuition about the process, consider Figure
1. The left-hand side shows a small snapshot of T . As can
be clearly seen on the left-hand side, p3’s presence depends
on the presence of both p1 and p2, and p4’s presence on
the presence of p1 and absence of p2. The right-hand side
shows the partition induced by the first three patterns on T ,
and shows that p3’s dependency is mirrored in the way T is
split into blocks.

Note that the rejection on a lack of change in the partition
means that the S

∗ created by this selection will induce the
same partition as the whole S. Thus, the description of data
characteristics that the original set allowed is maintained,
satisfying subgoal 3.

Even though there might be cases where it is reasonable
otherwise, we consider Φ(T , ∅, pi) = 1 for all of our exper-
iments. This means that the first pattern p1 ∈ S according
to < is always in the reduced set S

∗. We will discuss other
possibilities in the last section.

Obviously there are – apart from T – two major points
influencing the result S

∗. First, there is the measure Φ which
so far remains unspecified. Second, the order < of the fea-
tures in S may be important. We will discuss several possi-
bilities for those two points in the next section.

3 Instantiations of the Algorithm

To show the applicability of our general algorithm to the
task of pattern subset selection we introduce several differ-
ent instantiations. We start by describing three selection
measures used. To give some more motivation for each of
those instantiations, we will attempt to give some “mean-
ing” to each selection measure used.

Figure 1. Partitions induced by patterns. The
left table shows which patterns pi occur in
the transactions tj . The right shows how the
patterns split up the data set. Four binary
patterns can induce at most 16 blocks. This
combination of patterns and instances yields
only four blocks, however.

3.1 Partition size quotient ΦQ

While rejection of patterns that don’t change the par-
tition will effectively cut down on the number of patterns
retained already, there is the possibility that adding a
pattern will affect only a few blocks. While this may be
acceptable in early steps of the selection process when not
many patterns are used and only few blocks formed, in
later steps this corresponds to only a small gain in new
information. Let’s assume for instance that exactly one
of the existing blocks is split into two sub-blocks when a
new pattern is added. This means that the total number
of blocks is raised by one. Depending on the number of
already existing blocks, this e.g. corresponds to 33% for
two blocks, but only 0.9% for 100 blocks.

The crudest way of measuring this lies in defining the
measure ΦQ(T , S∗, pi) = 1 − |T /∼S∗ |

|T /∼(S∗∪pi)|
. We can now

define a threshold on what we perceive to be an acceptable
increase in the number of blocks and use it for additional
pattern selection. The main advantage of this criterion is
that it is easy to evaluate. A possible disadvantage might
be that focusing solely on the number of blocks without
considering which blocks are split and which instances are
contained in the new sub-blocks is not enough.

3.2 Agglomerative clustering ΦC

To alleviate this, one can use an agglomerative clusterer
which combines some of the new sub-blocks until the old
number of blocks is reached. Let’s assume that as in the sec-
tion before, the addition of a new pattern leads to a split of
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an existing block into two sub-blocks. These have a dissim-
ilarity of 1 according to the Manhattan distance since they
agree in all patterns except the new one. By the same argu-
ment the parent block had a distance of at least 1 to the other
blocks. Thus one of the sub-blocks will have a distance of
2 to all blocks except its sibling. Non-split blocks might
have a smaller dissimilarity to non-sibling blocks than to
siblings, depending on the effect of the new pattern.

An agglomerative clusterer will combine two blocks
from the new partition into one block since then the old
number of blocks is reached again. Given the effects de-
scribed above, there will very likely be change that can be
measured using the Rand index, affected by the new pat-
tern over the entire partition, even unchanged blocks. For a
bigger increase in the number of blocks this change can be
expected to be even more pronounced.

The Rand index is defined as follows: assume two par-
titions P, P′. For each pair of instances ti, tj , two decision
variables exist - cij which is set to 1 if the two instances
end up in the same block in both P and P

′, 0 otherwise, and
dij = 1 if the two instances are assigned to different blocks
in both partitions, 0 otherwise. The Rand index is then:

Rand(P, P′) =
2 ∗

∑n−1
i=1

∑n
j=i+1 cij + dij

n · (n − 1)

We define ΦC(T , S∗, pi) = 1 − Rand(T / ∼∗
S

, T / ∼S∗∪pi
)

and set a threshold t that quantifies what we consider the
minimal acceptable number of changes for a pattern to be
chosen.

This technique will take longer to evaluate than the one
shown before since the clustering process needs at least
quadratic running time and for the Rand-index n(n−1)

2 pair-
wise decisions have to be made. It does have the advantage
of using information about the size and composition of the
blocks and not only about their number though.

3.3 Inference of patterns ΦI

The first selection technique we showed strictly evalu-
ates whether patterns can be described by a combination of
others while the second one evaluates the effect of combin-
ing instances that differ in only one pattern. A third op-
tion is also possible in which a machine learning technique
such as a rule-based learner is used to evaluate the possibil-
ity of predicting the presence/absence of a pattern based on
the presence of previously chosen patterns. While this will
never lead to a perfect model1, a pattern whose presence or
absence is correctly predicted on the majority of instances
can be considered as not adding much information.

1Due to the rejection of patterns that do not effect a change in the par-
tition.

Given a pattern set S
∗ = {p1, . . . , pk}, a new pattern

pk+1 and the database T , we identify each transaction ti
with its binary feature vector

−→
fS∗(ti) = 〈p1(ti), . . . , pk(ti)〉

and label it with c(ti) = pk+1(ti). We use a learner2

to induce a hypothesis h : X → {0, 1} where X =
{−→fS∗(t)|t ∈ T } and define the measure ΦI(T , S∗, pk+1) =

1 − |{ti|h(
−→
fS∗ (ti))=c(ti)}|

|T | .
Note that in this case all instances are represented as fea-

ture vectors including duplicates w.r.t. the feature vectors.
This means that a feature having only marginal effect on
large parts of the instance space will be predicted with high
accuracy while a feature that e.g. splits the largest block in
half will have far less accuracy, thus having a better chance
of being chosen.

3.4 Ordering relations

As we mentioned before, the second important issue in
the instantiations of our general approach is the ordering
relation used. When working with frequent itemsets two
simple types of orderings are possible based on support and
on length of the itemsets, respectively. In each case we can
use two directions of ordering, either ascending or descend-
ing. This leads to a total of four different orderings: support
ascending (s↑), support descending (s↓), length ascending
(l↑), and length descending (l↓) evaluated in the experimen-
tal section.

4. Experimental Evaluation

To evaluate the presented approach we used pattern sets
from five UCI itemset mining tasks, harvested using an
APRIORI implementation [1] with different minimum sup-
port thresholds. We obtained closed pattern sets of a size as
shown in Table 1.

Table 1 also reports the minimum and the maximum
number of patterns needed to induce the same partition as
is induced by the full set of patterns S. The low number is
produced by either the s↓ or l↑ order, the large number by
one of the other two.

For each of the data sets we evaluated two minimum
support thresholds σ. Due to a less than efficient imple-
mentation, the subset selection for the 10% setting on the
mushroom data set, which produced 16000+ closed pat-
terns, didn’t finish in time and is not reported here. As Table
1 shows even setting σ to quite large values 3 and restricting
the result to closed patterns, removing quite some redun-
dancy, the size of the pattern sets are still too large for use
by a human expert. It can be observed that reducing the set

2The JRip implementation of WEKA
3Other work often reports values of only 1%
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Dataset TicTacToe Mushroom Breast-Cancer Vote Primary-Tumor
Size 958 8124 286 435 339

min support σ = 10 σ = 5 σ = 25 σ = 5 σ = 1 σ = 25 σ = 10 σ = 25 σ = 10
c. patterns 191 951 694 1018 6358 2063 15433 4873 17384

ΦQ 5 6 3 3 3 5 2 3 3
ΦI 3 3 3 4 4 3 3 2 6
ΦC 2 2 2 2 2 2 2 2 2

max number blocks 958 1180 266 337 342 258 275
min number patterns 17 21 23 26 19
max number patterns 160 78 71 133 231 161 229 88 141

Table 1. Data sets and the size of the according closed pattern sets, the smallest reduced sets for
each measure, and the minimum and maximum number patterns for the maximal partition as well as
its cardinality.

to the patterns needed to recreate the partition gives a large
reduction for the “right” orders.

We used the three selection measures and four orders
described in the preceding section. The measure ΦC us-
ing clustering turned out to be the most most expensive in
terms of computing power. The quotient measure ΦQ was
rather fast, leaving the measure ΦI employing a learning
algorithm in the middle. For each of the three techniques a
threshold t has to be supplied which – although indirectly
– determines the size of the resulting pattern set S

∗. We
used the thresholds {0, 0.01, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4},
obtaining one reduced pattern set per threshold for each of
the itemsets. The intervals between different thresholds thus
become wider the tighter the thresholds are, since we work
on the assumption that tightening the thresholds for relaxed
values will have a larger effect.

Figure 2 shows |T ∼∗
S
|

|T ∼S| plotted against |S∗| for each of the
selection methods, with each curve corresponding to an or-

der. Additionally a curve 2|S∗|
|T ∼S| is shown for comparison.

These particular plots were derived on the voting-record
set with σ = 25%. The x-axis is scaled logarithmically
to make the differences for the smallest pattern sets more
visible since many methods converge there. As these plots
compare the ability to recover a partition of equal informa-
tiveness as the original pattern set to the size of the reduced
set, points/curves closer to the upper left corner can be con-
sidered better.

The first observation to be made is that the “high-
support” orderings (s↓ and l↑) perform very similar to each
other as do the “low-support” orderings (s↑, l↓). Addition-
ally the latter induce larger S

∗ for the same size of the par-
tition when compared to the former.

Second, the reduction in patterns is for most settings not
linear to the decrease in blocks, meaning that our approach
doesn’t need to sacrifice too much in information about the
data set to improve comprehensibility by the user.

Third, there are two very distinct differences between
ΦC , and ΦI and ΦQ. On the one hand, in the area where
the thresholds are rather loose, leading to relatively large

S
∗, ΦI and ΦQ show a smooth curve that corresponds to

the small increases in the threshold setting while ΦC re-
duces the cardinality of S

∗ rapidly. It also induces a coarser
(less blocks but of higher cardinality) partition doing so. On
the other hand, once the threshold is raised above a certain
value, large changes in the threshold have less effect on ΦC

than on the other two measures, resulting in a smooth curve
for small sets for ΦC and more abrupt changes for ΦI and
ΦQ. Ultimately, the threshold of 0.4 leads to a reduction of
|S∗| to 2, essentially the lowest reasonable cardinality, while
ΦI and ΦQ produce larger sets at that threshold.

Regarding the comparison of ΦI to ΦQ, it should be
noted that for the “low-support” orderings ΦI shows a
steeper descent for low thresholds which means that it is
quicker in recovering the size of the partition.

The behavior for ΦQ is not surprising, since it mea-
sures the ability of patterns to split existing blocks into sub-
blocks. It is to be expected that raising the threshold in little
steps will exclude only a few patterns compared to the set-
ting before so that smooth curves are produced. In contrast,
large steps will ratchet up the selectivity quite a bit, leading
to larger drops in cardinality.

As explained before ΦI would e.g. reject a pattern that
splits only one (or few) block(s), especially if they are small
since then the pattern could be reliable inferred on the ma-
jority of instances. On the other hand, patterns that would
be rejected by ΦQ as not adding enough blocks might be
accepted by ΦP if the “right” blocks are split. This means
that especially for relatively low thresholds less patterns are
removed from consideration, thus allowing to quicker find
near-optimal patterns regarding partitioning the data.

Finally, the main operational difference between ΦC and
the other two measures lies (as mentioned in Section 3) in
the fact that the effect of rolling back an “old” decision af-
fects acceptance of a new pattern. This means that two types
of patterns will be accepted: those that split many blocks
(as it should be) and those that evaluate the same for similar
pattern combinations.
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Assuming a threshold of 0.01 and a pattern that splits a sin-
gle block.

• ΦQ will very likely accept

• ΦI will accept if the pattern is not too uniform over the
other blocks

• ΦC will accept if the pattern is not too diverse over the
other blocks

Uniformity over blocks is less likely than diversity. So ΦI

will potentially accept more patterns than ΦC . Also, ΦC

will accept less patterns than ΦQ (at least if the increase
in number of blocks required for acceptance by ΦQ is not
large). This should explain why there is such a drop-off for
small increases in the beginning. Later when large changes
in the Rand are required, patterns are aided by the fact that
roll-back of earlier decisions might help them in being ac-
cepted. Based on these observations we perform the follow-
ing comparisons:

4.1. Support↓ vs Length↑

The similarities of these two orders are not that surpris-
ing, given that in pattern mining short (general) patterns
usually match relatively many transactions, i.e. they have
high support. This, however, does only hold to a certain
degree4.

We are interested in how similar the S
∗ induced by those

two orderings are. This is evaluated for each method w.r.t.
the orders in question. We use the Rand index as a simi-
larity measure for any two pattern sets, which will decrease
if there are a different number of blocks or instances are
partitioned differently. Since a partition induced by a S

∗

constructed using one order will not necessarily have a cor-
responding partition of equal cardinality, we compare to the
two closest partitions (one with higher, one with lower car-
dinality) and consider the larger Rand index.

The partitions induced using the two orders are very sim-
ilar for all three methods, especially for permissive thresh-
olds reaching Rand values in excess of 0.95. The similarity
stays high for ΦI and ΦQ while ΦC derives rather different
partitions for tight thresholds.

4.2. Ascending(↑) vs Descending(↓)

Obviously, the patterns selected from descending and as-
cending orderings will not be the same. It is however possi-
ble that patterns selected from one ordering can be inferred
from the other pattern set. To evaluate this, we compare
pattern sets resulting from descending vs. ascending order-
ings while keeping all other variables fixed. Similarly to the

4Some patterns consisting of 2 items might have higher support than
some single item patterns for instance.
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Figure 2. Plots for the three measures on
Voting-record σ = 25 showing nicely the char-
acteristics present in almost all data sets an-
alyzed. The max in each plot indicates the
maximum number of blocks that can be in-
duced by the given number of patterns.
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inference selection step, we induce a model on T for each
pattern of S

∗
1 using the patterns of S

∗
2 as features, and vice

versa. The minimum accuracy for each pattern set is a quan-
tifier of how well one pattern set can be inferred by another
one.

Indeed, for S
∗ inducing maximal partitions on the data

set we observe very high accuracies regarding inference.
When the S

∗ induce partitions with fewer blocks, the in-
ference accuracy decreases as well. However, S

∗ obtained
using a s↓ ordering can usually infer larger sets obtained us-
ing a s↑ ordering. This observation suggests the following:
to recover the complete partition with a compact (under-
standable) S

∗, choose e.g. s↓. To discover information not
encoded in s↓-sets, tighten the thresholds and use s↑, since
now s↑-sets become manageable.

Again, we also compared the partitions induced by the
S
∗ using the Rand index. Surprisingly, ΦC shows very sim-

ilar behavior to the s↓-l↑ comparison. The difference be-
tween e.g. s↑- and l↑-induced partitions seems to be neg-
ligible at least when compared to an s↓-induced partition.
ΦI is particularly stable in this comparison, never having a
Rand value of less than 0.85. This essentially mirrors the
observation that these pattern sets can be inferred quite well
from each other.

4.3. Comparing the prediction quality of se-
lection methods

As we have seen, the size of reduced pattern sets is small
enough that it would be possible for a human to inspect
them. We have argued however that reducing the pattern set
also helps machine learning algorithms that use the binary
vector representation to learn a model. We are especially
interested in whether the smallest sets (easiest to inspect for
a human) give sensible accuracy results. To evaluate this
we use C4.5 to induce models on the binary feature rep-
resentation obtained by using the different S

∗ and estimate
their classification accuracy, via ten-fold cross-validation.
We also learn models on the binary vector set constructed
using S and on the original attribute-value representation.

An example for accuracies attainable with different se-
lection measures and orderings is shown in Figure 3. The
orderings from left to right are s↓, s↑, l↓, l↑. It can be seen
that the ”high support” orderings are performing better than
their respective ”low support”-counterparts. While this does
not hold of for all data sets it is a rather common trend.

We use a second figure (Figure 5) for comparing the
accuracies of C4.5 models on four representations. These
are the original attribute-value representation of the data,
and binary vectors which are created using S, the best-
performing S

∗ selected by an instantiation of our approach,
and mikis, respectively. At the top of the each bar represent-
ing the best S

∗, a number denotes the size of the correspond-

Figure 3. Best cross-validated C4.5 accura-
cies (all orderings for each measure) on Tic-
TacToe (σ = 10%)

Figure 4. A visualisation of S
∗ for Tic-Tac-Toe

σ = 5% using s↓, ΦC , and a threshold of 0.4.

ing pattern set. The most relevant result of this comparison
is that usually neither the binary vector representation de-
rived from the whole S, nor the one based on the S

∗ that
gives the maximal partition are best-suited for the machine
learning algorithm. Instead, for all data sets, a reduced pat-
tern set gives the best accuracy after cross-validation and
pruning. This supports our assumption that too many fea-
tures only lead to an over-fitting effect and don’t benefit the
learner. The size of the corresponding pattern sets is so
small that they should be easily interpretable by the user.
An example for the tic-tac-toe data set is given in Figure 4.

The attribute-value representation still proves to be more
expressible than the pattern representations for most cases,
a problem that could probably be alleviated with the use of
a more lenient support threshold. Furthermore, no single
ordering or selection method does distinguish itself and se-
lection thresholds vary between 0.03 and 0.4. Keep in mind
however that we didn’t aim to maximize predictive accuracy
and our illustrative instantiations are not meant to exhaust
the entire issue.
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Figure 5. C4.5 cross-validated accuracies for attribute-value representation, closed-set binary repre-
sentation, best S

∗, and miki (2 patterns)

4.4. Comparison to pattern teams

Finally, we also used the algorithms by Knobbe et al. to
mine pattern teams on the sets of closed patterns. Due to the
rather large running times of these techniques only pattern
teams of size k = 2 have been selected. The comparisons
in this case focus on the similarity of the pattern teams to
our reduced pattern sets (Rand-index and inference) and on
the effectiveness as features for classification purposes.

We compared the maximally informative k-itemsets
(miki) obtained with algorithms by Knobbe et al. to reduced
sets obtained by using ΦC with a rather strict threshold. In-
terestingly the sets compared exhibit very similar behavior
w.r.t. to all comparisons. First, all but one consist of two
patterns. Their prediction qualities are the same, and they
can both equally well infer the other set. High Rand values
furthermore show that our approach induces very similar
partitions. This is interesting insofar as mikis are mined us-
ing a complete method maximizing mutual entropy, a mea-
sure that rewards balanced partitions, while we employ a
heuristic method.

5. Related Work

There are two fields of research that our work shows
similarities to: the selection of “informative” subsets from
mined patterns, and feature selection/feature construction
for classification purposes.

5.1. Selecting informative subsets

Much work has been done on reducing the number of
patterns that are returned to the user by a mining process.

The approaches can roughly be differentiated into three dif-
ferent categories:

5.1.1 Selecting subsets with ad-hoc properties

The earliest and in a sense simplest approach to reducing
sets of frequent patterns lies in selecting subsets of this set
that allow for the reconstruction of the entire set. The ear-
liest such technique reduces a set of frequent patterns to
their (positive or negative) borders [10]. The information
stored in the borders allows to quickly determine what the
syntactic makeup of frequent pattern is. Support informa-
tion would have to be found by rescanning the data again
but borders are usually a lot smaller than the complete set.
Subsets that allow for the reconstruction of both syntactic
makeup and support information while at the same time de-
creasing the size of the set of patterns to be considered in-
clude the sets of closed, free, and non-derivable patterns
[12, 2, 4].The main difference to our work lies in the fact
that the underlying assumption of these solutions is that all
found patterns are of interest to the user, an assumption that
we do not make. Also, as can be seen in our experiments,
even those property-restricted sets can be large and there is
still a lot of redundant information present.

5.1.2 Summarizing frequent patterns

On the other hand, to give the user a good idea of the infor-
mation encoded in the patterns without focusing too much
on the exact composition and support properties, it is pos-
sible to summarize frequent patterns. To this end, frequent
patterns (and association rules) have been clustered [9], usu-
ally by defining a similarity measure involving the syntactic
makeup and regions of the data covered. To the user then
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representatives of the found frequent pattern clusters are re-
turned with the assumption that analysis of those represen-
tatives will allow the user to gain information. The first
step of the general technique we introduce does something
similar in that for all patterns matching the exact same in-
stances only one pattern will be returned. A difference here
is that no patterns that encode the same information as a
combination of patterns will be returned, which would prob-
ably form their own cluster(s) in the existing approaches.
Yet again, the working assumption of summarizing frequent
patterns is that the user is interested in the information en-
coded by all patterns.

5.1.3 Selecting informative patterns

Finally, approaches that are most similar to our work are
relatively new and attempt to select subsets of informative
patterns with informativeness being defined w.r.t. some task
at hand. This could for instance be lossless compression of
the database using an MDL criterion [11], or removal of
redundant information according to the joint entropy crite-
rion [6]. The work of Siebes et al. (developed indepen-
dently and a bit before our technique) follows very simi-
lar ideas and intuitions about the meaning and use of pat-
terns, and the naı̈ve variant of their algorithms, given the
right modifications, could be formulated as an instantiation
of our general idea. A main difference is that we cannot ex-
pect to find patterns that allow a lossless compression of the
database, which on the other hand means that the reduced
pattern sets of Siebes et al. are larger than ours. The ap-
proach of Knobbe et al. is different in that their focus is
very strongly on low-redundancy patterns. The upside of
this that their pattern teams show a lot less redundancy than
the sets we derive for loose threshold settings. The down-
side is that searching the space of possible pattern teams is
far larger which is why their approach needs an additional
parameter, namely the size of the pattern teams (which is
significantly below 10). As we have shown in the experi-
mental session, we do, for strict settings of our thresholds
arrive at pattern sets very similar to Knobbe’s pattern teams

5.2. Feature selection/construction for clas-
sification

5.2.1 Feature selection

Approaches to feature selection involve for instance rele-
vancy constraints in subgroup discovery [8]. We mention
this approach in particular since the underlying idea is sim-
ilar to ours, with the restriction to class-labeled data. Many
other feature selection approaches also select relevant sub-
sets of all features, with many techniques using heuristic
methods. In general, measures such as an improvement of
accuracy on some testing data could be used in our general

algorithm. However, our approach is not limited to class-
labeled data, but can easily be used unsupervised and the
focus is not necessarily better classification accuracy but the
removal of redundancy.

Another class of feature selection methods that is related
to our technique are so-called “wrapper” approaches. In
these usually features are selected, handed to an evaluation
algorithm and then on their inclusion decided. An example
that seems very close to our work is [5] in that the wrap-
per uses unsupervised learning instead of an induction algo-
rithm. A main difference in such approaches lies in the fact
that usually all features for inclusion are considered, mak-
ing the search space again rather large. By using a heuristic
approach, we can handle far more patterns than such an ap-
proach could.

5.2.2 Feature construction

A somewhat similar approach to this work is embodied by
the KFOIL[7] system, as well as by TREE2[3]. The main
principle of these approaches is that patterns are constructed
while a classifier is built. This means that obviously every
pattern used in the final classifier is dependent on the other
ones and the information contained in them. Since those
approaches proceed in such a way that they greedily con-
struct the next best feature and the focus is again classifica-
tion accuracy, there are also quite a few differences to our
technique.

6 Discussion and Conclusions

The focus of this work is the reduction of result sets of
pattern mining operations to sets of what we called “valu-
able” patterns - pattern sets with little redundancy among
their members, capturing most of the characteristics of the
underlying data, and being of a cardinality still accessible
to humans. To achieve this task we introduced a general
heuristic algorithm and showed several instantiations with
selection criteria and orderings w.r.t. which the patterns are
processed.

In the experimental evaluation on several UCI data sets
we showed that we achieve our goal of significantly reduc-
ing the sets of closed patterns mined on them. Given a
well-chosen ordering (support descending or size ascend-
ing), cardinality of reduced pattern sets is in most cases be-
low or around 30, a size that should still be interpretable by
humans.

Additionally, while tightening the thresholds has the ef-
fect that the cardinality of reduced sets decreases, the de-
crease in number of blocks is less or equal to this. This
means that the number of patterns for consideration can be
reduced without losing too much information. Furthermore,
reducing the number of patterns does not necessarily lead
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to a decrease in classification accuracy when compared to
larger sets or the original representation. Quite contrary, on
several occasions larger pattern sets do “confuse” the ma-
chine learner, leading to overfitting.

To summarize, we manage to achieve our three subgoals
with different instantiations of our general algorithm. All
three selection measures have their merits, with ΦC be-
ing computationally most expensive but also showing very
good reduction effects while the ΦI and ΦQ recover more
of the original partitioning at the expense of less reduction
in set cardinality.

There is of course ample opportunity for future work.
The flexibility of our approach allows for the definition of
more exotic orderings - for instance could a human expert
set a pattern (or a number of patterns) as seed(s) and de-
fine a dynamic ordering that changes given the current pat-
tern set (e.g. based on city block distance to the current
blocks). Additionally, other measures are also possible such
as the MDL criterion used in Siebes et al.’s work or accu-
racy based selection measures that mirror “classical” feature
selection.

So far our technique remains a post-processing step. And
while the generality of the algorithm and the different mea-
sures it allows make it hard to incorporate the entire selec-
tion in a mining operation itself, at least the partition cardi-
nality might be turned into a constraint that can be pushed
into the mining step itself.
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