Using Data Science to Improve the Identification of
Plant Nutritional Status

David Condaminet

Normandie Univ, UNICAEN, ENSICAEN, CNRS

UMR GREYC - 14000 Caen, France
david.condaminet@unicaen.fr

Bastien Billiot
Centre Mondial de I’Innovation Roullier
Laboratoire de Nutrition Végétale
35400 Saint-Malo, France
bastien.billiot @roullier.com

Abstract—Developing products for improving plant nutritional
status, e.g. fertilizers or plant growth regulators, is an important
topic to move towards sustainability in agriculture and to ensure
to feed the world population. A key challenge is to identify
when, what, and how much nutrients to add to plants’ growth
environment. In this paper, we study a use case on how to
characterize rapeseed plant nutrient deficiencies during their
growth. A promising approach consists of deriving data from
spectroscopy of leaves, and using this representation to predict
what kind of deficiency (if any) plants are undergoing. We are
considering three research questions: 1) from which day after
onset of a nutrient deficiency we can identify it, 2) whether leaves
that have sprouted under nutrient-rich conditions can still help in
identifying problems. Third, and most importantly, performing
the spectroscopy on the full range of wavelengths is expensive,
which under production conditions allows for only relatively few
samples. We therefore explore how to perform dimensionality
reduction and preprocessing to achieve good predictive accuracy.
We show that 1) deficiencies can be identified early on, 2)
leaf generations help to predict nutrient deficiencies, and 3)
that preprocessing increases the accuracy and dimensionality
reduction can be performed without loss of accuracy. Along the
way, we find that our some of our industry partners’ assumptions
about the data do not seem to be borne out by our empirical
results, and that the subset of data they initially selected turns out
to be too easy to model. The full data leads to more informative
insights.

Index Terms—agronomy, plant nutrition, dimensionality re-
duction, subgroup discovery, classification

I. INTRODUCTION

Agricultural chemistry is concerned with exploring the
biochemical processes governing plant (or animal) growth,
maturation, diseases etc. The end goal of such research is
the development of substances that can support or control
processes, e.g. fertilizer, herbicides and pesticides, or plant
growth regulators. Even though the field has been an important
contributor to the “green revolution” of the 20" century, it
has acquired renewed relevance recently since agricultural
paradigms are shifting.
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In 215t century agriculture, and in particular in the context
of plant nutrition, both how to affect improvements in soil
quality, and how to ensure the sustainability of the intervention
need to be considered. In addition, production yields should
be enough to feed an expected 10 billion people by 2050.
To this end, bringing out plant nutrients should follow the
maxim: “as much as necessary, as little as possible”. One
step towards this goal consists of identifying precisely when,
what, and how much of nutrients to add to plants’ growth
environment. Adding too little or too late will stunt growth
(and yields), whereas adding too much or too soon puts
pressure on ecosystems and ground water (and might also stunt
growth and yield).

This paper presents joint work between the GREYC Lab
(Caen, France) and the Centre Mondial de I’Innovation Roul-
lier (Saint-Malo, France). The purpose of the Centre Mondial
de DI'Innovation Roullier is to accelerate the development
of advanced technical products to respond to the needs for
crops in an increasingly constrained economic, social and
environmental context. Increasing their innovation capabili-
ties necessarily involves developing their product screening
capabilities, both in terms of frequency and characterization
parameters. It is this context that the study presented in this
paper fits into.

A widely used method (cf. Section II) of identifying stresses
on plants consists of performing spectroscopic analysis of
plant leaves. Our industry partners approached us with ex-
perimentally generated data and three research questions:

1) From which day after onset of a nutrient deficiency can
it be reliably predicted?

2) Which leaf generations (a concept that we will explain
later on) are useful for predicting such deficiencies?

3) How can one reduce the set of wavelengths to be
measured?

The latter point requires some clarification: a lack of knowl-
edge of the most informative wavelengths requires the use of



wide-range spectrometers, which is a) costly, and b) degrades
the measurement precision for each wavelength (wavelength
for short). Related to this, spectroscopic measurements are
only a means to an end, and feature reduction in the sense
of removing uninformative or redundant features could aid
eventual classification methods to better predict the stress a
particular plant undergoes.

This is an exploratory paper in the sense that we first
state the problem setting (Section III), characterize the data in
Section IV, and perform an initial analysis of the spectroscopic
measurements data to get a better understanding (Section V).

In Section VI-A, we discuss the results of data treatment
methods proposed by our industry partners, informed by their
own experience and the state of the literature (Section II),
before analyzing the data in more detail, showing the impact
of the leaf generations (Section VI-B) and the date of trans-
plantation (Section VI-C) as well as different techniques to
improve the data representation for characterizing deficiency
conditions (Section VII). Regarding our research questions, we
show that 1) deficiencies can be identified early on, 2) all leaf
generations help to predict nutrient deficiencies (including L1
leaves which was unexpected for our industry partners), and 3)
that preprocessing can increase the accuracy and the number
of wavelengths can be divided by 3 without loss of accuracy.
Another contribution validates our partners decision to invite
our expertise into the process: we find that some assumptions
of our industry partners about their data do not seem to be
borne out by our empirical results and that working on the
full dataset leads to more informative insights.

II. RELATED WORK

While machine learning and data mining has been used
in connection with agrochemical products, it has been in
the context of fertilizer recommendation, disease and weed
detection, field management, or risk assessment. For a survey
in agriculture see [1].

Dimitriadis et al. propose to use machine learning methods
to make decisions regarding irrigation, fertilizer, and pesticide
application [2]. Kuchenbuch et al. try to predict yield increases
based on soil and plant characteristics [3]. Yu et al. use an
ensemble of neural networks to address the same problem [4].
Recently, Shekoofa et al. evaluated techniques that not only
predict maize yield but also aid in understanding it [5], settling
on decision tree models. Yuan et al. used Gaussian processes
to optimize fertilizer application [6].

A work that is very closely related to our proposal for
identifying deficiency conditions used SVMs and ANNs to
predict nitrogen and weed stress [7]. Their data set was much
smaller than our, only 360 data points, and they report 81%
classification accuracy for nitrogen stress and 89% for weed
stress. That work was only interested in the feasibility of
automatic classification, however, whereas we explore when
and which data to acquire. The derived information should
help calibrating data acquisition more carefully, and therefore
aiding in the future application of data science methods.

Gholap et al. have proposed automatically predicting soil
characteristics [8], a question that is obviously connected to
how to improve its nutritional profile.

Jay et al. compare different hand-crafted vegetation indices,
derived from spectral data, and parameters derived from invert-
ing simulation models for identifying the nitrogen content of
leaves [9]. While our samples were created under controlled
conditions, their samples came from production plantings and
they do not consider explicit stress conditions.

There is also work on selecting which bandwidths of spec-
tral imaging to use for different tasks, often using partial least
squares regression (PLSR) [10] or related methods, selecting
wavelengths based on the strength of regression coefficients.
Peng et al. performed prediction of salt concentrations in soil,
using PLSR and training a support vector machine on the re-
duced representation. Li ef al. and Guo et al. [11], [12] propose
using a repeated subsampling (similar to bagging) to reject all
wavelengths that are not consistently identified as informative,
followed by a PCA-like procedure that selects features that
allow for the largest projection into a plane orthogonal to the
already selected features. They report that they can reduce the
full descriptor space from 2151 wavelengths to 31, and further
to 7 via multiple linear regression, and that this approach
outperforms selection by PLSR. All such methods suppose
that the entire spectrum is available to select from, however,
and typically do not report specific wavelengths as informative.
By contrast, the purpose of our work is to reduce the cost and
increase the precision of the imaging system by selecting a
subset of wavelengths beforehand to deploy detectors for.

Benoit et al., finally, model photodetectors with Gaussian
depending on the central wavelength and the bandwidth of the
channel, select optimal parameters (for the discriminative task
at hand) via Kullback-Leibler divergence, and report better
results than PLSR or CDA. Their stated motivation is close to
ours, limiting the amount of sensors that need to be deployed
but their approach closer to the dimensionality reduction we
describe in Section VII. The main difference is that the authors
fix the number of “groupings” and search exhaustively for the
best center and width.

III. THE PROBLEM SETTING

The overarching goal is the automatic, precise, and early
identification of nutrient deficiencies. The necessary informa-
tion can be collected via spectroscopy but there are several
questions that remained unclear to our industry partners who
lack in-house data science expertise and therefore approached
us.

First, it is not clear how early such deficiencies can actually
be detected. Early detection is preferred since it requires less
intervention to correct the problem.

Second, nutrient deficiencies will be expected to arise
during the growth process, and while they should be easy
to predict from strongly deficient leaves, we want to know
whether leaves that experience nutrient stress after they have
sprouted are also informative.



Finally, it is important to identify which wavelengths are
informative, and using the insight to tailor the sensor setup.
Wide-range spectrometers, like the one used to generate the
data in this paper, used by laboratories specialized in this kind
of analysis are expensive (~45k €). This price point makes
the acquisition of several of them prohibitive, and therefore
slows data acquisition.

The goal of our analysis is therefore to reduce the range
of wavelength needed to help with making data acquisition
cheaper.

Several smaller setups of fewer sensors focused on partic-
ular wavelengths could be deployed at a lower price, gener-
ating more (and more precise) data. As we will see in our
preliminary study (cf. Section V), even leaf samples from
the same generation and experiencing the same conditions
show differing wavelength reflectance values. This range could
be tightened with smaller setups. While we discuss all three
questions in our work, the biggest part is taken up with the
third one, which requires more extensive experimentation.

IV. THE DATA

Our industry partners have provided us with data of rapeseed
plants that have been put into situations of nutrient stress
in company greenhouses. These data (called FD for “Full
Dataset”) are generated in the following manner:

1) Plants are seeded into soil.

2) Plants are transplanted into a hydroponic solution con-
taining all nutrients.

3) A week after the transplant, the hydroponic solution is
replaced with a nutrient-deficient one.

4) Every three or four days, the hydroponic solution is
replaced, and spectrographic analysis is performed (see
below).

Plants belong to eight different classes and the same exper-
imental conditions are applied during the experimental cycle
except the nutrients:

¢ (1) FULL — no nutrient stress (control group)

« complete lack of (2) nitrogen (NO), (3) sulfur (S0), or (4)
phosphorus (P0), respectively

o partial lack of (5) nitrogen (NINT), (6) sulfur (SINT), or
(7) phosphorus (PINT), respectively

e (8) FULLP — the control group of the phosphorus de-
ficiency experiments. Experiments for phosphorus defi-
ciency were done separately from nitrogen and sulfur
ones and our industry partners wanted to be able to
identify the two control groups with 2 distinct labels
(FuLL and FULLP) in case of bias.

Data are generated via spectroscopy of leaves, using a VIS-
NIR 350-2500 nm spectrometer, in other words from near
ultraviolet to infrared. Leaves come in three types (indicated
by the attribute L):

e L1: are leaves that sprout early and grow mainly in
an environment where all nutrients are available. It is
expected that they can store everything necessary and
they are not expected to show deficiencies. However,

TABLE I
DIFFERENT NUTRIENT CONDITIONS AND THEIR PROPORTION OF THE DATA

Condition | Percentage of data

FuLL 9.08%
NO 10.9%

SO 11.3%

PO 15.7%
NINT 10.9%
SINT 10.9%
PINT 15.7%
FuLLP 15.5%

spectroscopic measurements are done after the beginning
of the nutrient deficiency.

o L3: sprout when all nutrients are available but potentially
grow in a nutrient-deficient environment.

e L5: sprout already in a nutrient-deficient environment.

Our industry partners recommended that we ignore wave-
lengths < 450nm and > 2000nm, which still left us with
data of a dimensionality of 1551. Wavelengths outside this
range have a too high noise-to-signal ratio to be useful.
In addition to the wavelengths, data are described by the
type of leaf, and the day (since the transplantation into the
nutrient solution) when the measurement was taken, with
possible values {9, 13, 16, 20, 23, 27, 30, 34, 37}. That attribute
is denoted by DaT (Day After Transplantation). It should be
noted that the deficient solutions are introduced on DaT = 8.
All in all, we were supplied with 1365 leaf samples, with
different nutrient conditions having the proportions shown in
Table L.

Both our industry partners and we feel that using data
analysis for optimizing plant nutrition is a promising future
research direction, which is why we make the data available
at https://figshare.com/articles/cleaned_spectra_csv/12445574.

V. A PRELIMINARY STUDY OF THE SPECTROSCOPIC
MEASUREMENTS

In this section, we perform an initial analysis of the spec-
troscopic measurements as usual in a data science process
to get a better understanding of the data. We find that the
measurements differ according to the nutrient deficiencies so
using these data to characterize the nutrient deficiencies is
justified, but also that they are not simple to exploit.

a) Mean of wavelength measurements over all samples
per condition.: To gain a first understanding of the data, and
following the recommendation of our industry partners, we
separated samples into different deficiency conditions and cal-
culated the average value per wavelength. As Figure 1 shows,
there are visually noticeable differences: plants experiencing
phosphorus deficiency exhibit higher reflectance values for
all wavelengths (note that FULLP and PINT are very close
and hardly distinguishable). As for the other conditions, they
are more or less well separated depending on the wavelength
range. This indicates both that predicting deficiency conditions
based on spectroscopy should be possible, and that it is not
straight-forward.
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Fig. 2. For SINT, reflectance values according to wavelength (L1, L3 and
L5 are leaf generations)

b) Reflectance values for all samples given a condition.:
Figure 2 shows all samples belonging to the SINT class,
color-coded depending on the leaf generation (L1, L3 and
L5). As we can see, real data, especially one derived from
a natural process, is not particularly homogeneous. Since this
is already the case for these plants grown under controlled
greenhouse conditions, we would expect that outdoor-grown
plants to show even larger deviations. This problem that
will be aggravated by a small-scale use of wide-spectrum
spectrometers. This observation is also a motivation for the
preprocessing techniques that we evaluate in Section VII.

VI. CHARACTERIZING DEFICIENCY CONDITIONS: DATE OF
TRANSPLANTATION AND LEAF GENERATION

We start this section by defining a baseline in order to be
able to evaluate preprocessing options objectively, then study

the impact of the leaf generations and the date of transplanta-
tion in the context of characterizing deficiency conditions.

A. Establishing a baseline

The state of the art in predicting nutrient deficiency condi-
tions applies discriminant analysis or regression methods. The
most-widely used of these is partial least squares regression
[10]-[12]. That is why we chose PLSR as a first baseline
for classification. In concrete terms, we used the PLSR im-
plementation included in the sklearn library, which requires
binarized targets for classification. We therefore use one-hot
encoding, representing each class label by an 8-bit vector, one
entry of which is 1, the others 0. The output of a PLSR
prediction being a numerical value, we interpret the output
dimension closest to 1 as indicating the class to be predicted.
We evaluated predictive accuracy via repeated randomized
stratified 90%/10% training/testing splits. Our code is available
at https://github.com/agrodm/dsaa.

Since phosphorus experiments are different from the ones
for nitrogen and sulfur, and they did not expect the L1
generation to show any deficiencies at all, our industry partners
recommended that we focus only on L3 and L5 leaves under
nitrogen/sulfur stress. In addition, to arrive at better separabil-
ity, they suggested working only on complete deficiencies (NO,
S0), in other words removing NINT and SINT samples. This
left us with a rather small data set containing 233 samples we
call SD3C (for Small Dataset 3 Classes, — FULL, NO, S0). Our
experiments show that SD3C is very easy to model w.r.t this
simplified classification task (first row of Table II), a surprising
result for our industrial partners. By contrast, as the second
row shows, the full data set makes for a more challenging
problem (experiments with more than 20 runs gave similar
results).

As mentioned in Section II, in [7] two stress conditions,
nitrogen deficiency and weed presence, were predicted. They
report that while combined stresses can be predicted with
only 69% accuracy, for nitrogen deficiency alone 81% can
be reached. They report best results for an SVM with the
RBF kernel, we therefore also used Weka’s [13] SMO imple-
mentation with the RBF kernel and explored v € [2715, 23]
and C € [27°,215] via grid search. We evaluated predictive
accuracy via a stratified ten-fold cross-validation. The results
are reported in the bottom half of Table II and we see a similar
phenomenon as for PLSR, with the small data set much easier
to model than the full one. After discussion, we convinced our
partners to drop their suggested setting for the sake of deriving
additional insights, and we will work on the full data set (FD)
going forward.

In a real-life setting, we cannot expect to know the leaf
generation, however, and there is a risk that the SVM exploits
this information to split deficient leaves from non-deficient
ones. The second column of Table II shows the effect of
leaving out the leaf generation, and we can see that for the
full, non-preprocessed data, removing leaf information indeed
slightly lowers predictive accuracy for the SVM but slightly
improves it for PLSR.



TABLE II
PREDICTION ACCURACIES FOR PLSR AND SVM USING THE RAW DATA. “DIM.” DENOTES THE NUMBER OF WAVELENGTHS IN THE DATA

Data set (Dim.) | w/L & w/DaT | wlo L | wio L & wlo DaT
PLSR
SD3C (1551) | 99.08%(1007runs) | 99.95%(100runs) N/A
FD (1551) 72.48%(20runs) 73.65%(20runs) | 75.44%(20runs)
SVM w/RBF kernel
SD3C (1551) 99.57% 99.57% 99.57%
FD (1551) 79.85% 79.34% 77.44%

Day after transplantation (DaT) is obviously also not avail-
able in a real-life setting (a farmer would know when he
brought out the seeds, though). The third column shows the
results when neither DaT nor L are available and we see a
clear reduction in accuracy for the SVM (but also another
improvement for PLSR). Finally, we also see that the SVM
achieves higher accuracies than the PLSR for all settings. We
will therefore only report SVM results going forward.

We’d like to stress that the use of the SVM is mainly due to
its having been used in the literature before. While other, more
recent techniques, might give better classification results, we
mainly aim to characterize the differences between different
representations, i.e. relative accuracy differences rather than
absolute ones.

B. Addressing question 1: the impact of the time since the
onset of the deficiency, i.e. DaT

The first question we were interested in is from what day
on we can reliably predict nutrient conditions. We consider
this question from two perspectives. The first is to simply
test for each day how well (or not) samples of this day can
be classified. Figure 3 (a) shows the results, for the moment
we are only interested in the curve labeled “Raw data”'.
Unsurprisingly, samples of DaT= 9 are difficult to classify,
given that deficiencies have been introduced only a day earlier.
Accuracy quickly ramps up, though, reaching almost 90% for
DaT= 34 (the decrease after DaT= 34 is likely explained by
the fact that at this day leaves are so deficient from nutrients
that spectroscopic measurements are no longer accurate). It
should be noted, however, that this represents a situation where
the model is trained on samples from that day, a situation that
we will rarely achieve in reality since we cannot know the
onset of nutrient deficiencies.

An arguably more realistic option is therefore to succes-
sively remove earlier samples, which will help us to understand
from which day on samples become informative because they
begin to show more intense effects of the deficiencies. Figure 3
(b) shows the results for this setting. Note that while in the left
figure all samples are of a certain DaT, on the right samples
are of that DaT or later. We see indeed that accuracy increases,
albeit with a drop at DaT= 23, gaining about seven percentage
points by DaT= 30, compared to the full data. The decrease
after DaT= 30 is probably due to the fact that only few
samples of mainly highly nutrient-deficient leaves are left at

IWe will return to the other curves in Sections VII-B and VII-C.

that point. Finally, we see that already from DaT= 13, i.e.
less than a week after the onset of nutrient deficiencies, rather
good prediction is possible, these samples are therefore already
informative.

C. Addressing question 2: the impact of the leaf generations

The second research question is whether all three leaf
generations are useful for predicting nutrient deficiencies, and
if so to what degree. Since, according to the experimental
setup, different leaf types have undergone different deficiency
conditions, there should be a relationship between leaf gener-
ations and nutrient deficiencies.

To answer this question, we look at the dual problem: given
a nutrient deficiency, can we reliably predict leaf generations?
We report classification results in Table III: for each of
the six deficiency conditions, we trained an SVM with an
RBF kernel to predict whether samples fall into L1, L3, or
L5. Accuracies were derived via a stratified ten-fold cross-
validation. SG, MSC are preprocessing techniques that we
will discuss in Section VII-A, RDP and PCC dimensionality
reduction techniques discussed in Sections VII-B and VII-C.

As the results in Table III show, this is indeed possible with
rather high accuracy, even if the SVM never reaches 100%. For
L3 and L5 leaves, this is partly an expected result, even though
the high accuracy is encouraging, but as we have described
above, L1 leaves should be able to store enough nutrients to
not be affected by deficiencies, according to our partners. It is
therefore possible that L1 leaves are simply so different from
later ones that they are easy to qualify.

To investigate this further, we looked in greater depth into
the role of L1 leaves. As Table IV shows, if we limit the data
to L1 leaves only, we can still achieve predictive accuracies
that are significantly higher than chance. The largest class
contains only 17% of the L1 samples, whereas the worst result
is at 65%. It seems therefore as if even L1 leaves experience
the effects of nutrient deficiencies, which should allow for
an earlier detection, which is an interesting result from the
application point of view (and might partially explain our
results for DaT).

VII. CHARACTERIZING DEFICIENCY CONDITIONS:
IMPROVING THE DATA REPRESENTATION AND
HIGHLIGHTHING USEFUL WAVELENGTHS

In this section we discuss the main part of our work: how
to improve the data representation. We evaluate both direct
options — smoothing and filtering — in Section VII-A, and
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TABLE III
PREDICTIVE ACCURACIES FOR PREDICTING LEAF GENERATION FOR DIFFERENT DEFICIENCY CONDITIONS
Data | NO | NINT | SO SINT | PO | PINT
FD 91.28% | 93.96% | 92.21% | 88.59% | 92.52% | 91.59%
FD+RDP+SG+MSC | 92.62% | 91.28% | 90.91% | 85.91% | 91.59% | 87.85%
FD+PCC+SG+MSC | 91.28% | 87.25% | 90.91% | 81.21% | 91.59% | 83.65%
TABLE IV B. Dimensionality reduction using Ramer-Douglas-Peucker
PREDICTIVE ACCURACIES USING ONLY L1 LEAF INFORMATION
Even though using SG and MSC does increase classification
Data | Accuracy .
D 63.51% accuracy, these results were derived from the full spectrums
FD+RDP+SG+MSC | 68.75% of wavelengths. Yet, as stated before, one of our goals is
FD+PCC+SG+MSC | 65.39% dimensionality reduction to make data acquisition easier. An

indirect ones — dimensionality reduction — in Sections VII-B
and VII-C. The latter part addresses research question 3.

A. Filtering and smoothing the data

As shown in Section V, raw spectroscopic data are not
homogeneous. One way of addressing the variability of spec-
trographic measurements is to filter and smoothen the data.
To do this, we applied a Savitzky-Golay (SG) filter® [14],
followed by multiplicative signal correction (MSC)? [15], both
common preprocessing steps in spectroscopy.

As Table V shows, applying SG does not improve classi-
fication accuracy for the full data compared to Table II but
the resulting representation weathers the removal of leaf and
DaT information a bit better. Additionally applying the MSC
algorithm, however, boosts accuracy by between one and two
percentage points.

2 Available in the scipy.signal library.
3Which we implemented ourselves. Our code is available at https://github.
com/agrodm/dsaa

existing option for dimensionality reduction is to use the
Ramer-Douglas-Peucker algorithm (RDP)*, a method that re-
duces the number of points describing a curve by keeping only
the start and end points of line segments [16]. We ran RDP
with € = 0.001.

As Table VI shows, applying RDP improves predictive ac-
curacy over the baseline (cf. Table II) and, more interestingly,
creates a representation where removing leaf information leads
to additional improvement.

Both the improvement and the significant reduction in the
number of wavelengths are promising, and an obvious follow-
up question is whether applying filtering and smoothing to this
reduced representation allows for additional gains. Table VI
also shows classification accuracies for when SG and MSC
have been applied. Applying SG alone does not have an effect
but additionally using MSC boosts accuracy on the full data
by another ~ 1.5 percentage points. Interestingly enough,
removing leaf information reduces accuracy below that of the
other two representations, yet when we also remove the DaT
feature, we get the best result for that column.

4Available at https:/pypi.org/project/rdp/



TABLE V
PREDICTION ACCURACIES USING AN SVM WITH RBF KERNEL, USING SMOOTHED AND FILTERED DATA. “DIM.” DENOTES THE NUMBER OF
WAVELENGTHS IN THE DATA

Data set (Dim.) w/L & w/DaT w/o L w/o L & w/o DaT
FD+SG (1551) 79.85% 79.41% 77.51%
FD+SG+MSC (1551) 80.88% 80.29% 79.78%
TABLE VI

PREDICTIVE ACCURACIES OF THE SVM, USING DIMENSIONALITY-REDUCED DATA

Data set (Dim.) | w/L & w/DaT | wio L | wlo L & wlo DaT
FD+RDP (540) 80.73% 81.1% 79.56%
FD+RDP+SG (540) 80.73% 81.1% 79.56%
FD+RDP+SG+MSC (540) 82.13% 81.03% 80.73%
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Fig. 4. Correlation between different wavelengths.

Going back to Figure 3, we see that the combined ap-
plication of RDP, SG, and MSC outperforms learning and
predicting on the raw data for almost all values of DaT. When
it comes to predicting leaf generations, however, Table III
shows that using the raw data is mostly preferable.

C. Dimensionality reduction via Pearson’s correlation coeffi-
cient

The previous section has shown that RDP provides signif-
icant dimensionality reduction and, combined with SG and
MSC, leads to good results on the data representation making
the fewest assumptions. However, 540 separate wavelengths,
though far less than the 1551 in the original data, still make
for a quite a bit of spectroscopy. In this section, we therefore
explore a different approach towards dimensionality reduction.

Inspired by RDP, we calculated the Pearson’s correlation
coefficient (PCC) between all pairs of wavelengths, resulting
in the similarity matrix shown in Figure 4. Where RDP groups
wavelengths according to the line segment they belong to, PCC
measures how well pairs of wavelengths increase (or decrease)
together.

The redundancy between adjacent wavelengths is clearly
visible — in fact, as the legend on the right-hand side shows,

the correlation coefficient is always > 0.75. Yet we can also
see split points where this redundancy is much lower than
for adjacent areas. A straight-forward approach to dimension-
ality reduction groups wavelengths together for which the
correlation coefficient exceeds a certain value. By setting the
entries larger than a threshold in the similarity matrix to 1, 0
otherwise, we can visualize such groupings. Figure 5 shows
them for four thresholds.

We want groupings that are rather homogeneous, well-
separated, and help with dimensionality reduction. While a
threshold of 0.999 does not help much with the latter, the
choice between the other three thresholds was more of a
judgment call. In the end, 0.95 grouped too many wavelengths
together, especially the two thin bands at the left/bottom,
whereas 0.98 already hints at lower correlations that fully
detach for 0.99, the threshold we chose. Using dynamic
programming, we can identify maximally sized sub-matrices
containing only 1s (Figure 6, left), each of which can be
represented by a single wavelength, achieving strong dimen-
sionality reduction while not losing too much information. We
retained only submatrices that group at least fifty wavelengths
to smooth effects specific to the data sample.

A final important consideration is to avoid grouping wave-
lengths of different colors:

e 450nm - 500nm for blue

e 500nm - 600nm for green

e 600nm - 700nm for red

e 700nm - 1400nm for near infrared (NIR)

e 1400nm - 2000nm for shortwave infrared (SWIR)

This is particular important since different regions corre-
spond to different phenomena: visible wavelengths represent
leaf pigmentation, NIR cellular structure, and SWIR water
retention. Taking this constraint into account narrows the
groupings somewhat as can be seen in Figure 6, right. As
we can see on the left-hand side, however, even unconstrained
groupings recover known regions rather well.

Together, the seven groupings cover 1295 wavelengths,
meaning that we reduce dimensionality from 1550 to 255, a
greater reduction than using RDP.

Table VII shows prediction accuracies using the PCC
dimensionality-reduced data, on raw, filtered, and filtered and
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Fig. 5. Binarized correlation matrices, for cutoffs 0.95, 0.98 (top row), 0.99, and 0.999 (bottom row).
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Fig. 6. Maximally sized squared matrices of strongly correlated wavelengths (left-hand side), taking color constraints into account (right-hand side).

TABLE VII
PREDICTION ACCURACIES USING AN SVM WITH RBF KERNEL, USING SMOOTHED AND FILTERED DATA
Data set (Dim.) | w/L & w/DaT | wio L | wlo L & wlo DaT
FD+PCC (255) 78.02% 77.44% 75.09%
FD+PCC+SG (255) 77.95% 77.44% 75.24%

FD+PCC+SG+MSC (255) 79.78% 78.97% 75.53%



smoothed data. As before, the main improvement to accuracy
comes from the MSC correction, even though SG also slightly
improves accuracy for the setting without DaT. In comparison
to Table VI, accuracies are lower, especially for the setting
with DaT. As Figure 3 shows, the representation PCC, SG, and
MSC is outperformed for individual DaT but mostly performs
better for the ablation setting. The most interesting result of
Table III is that the representation shows a relatively big drop-
off for leaves showing partial deficiencies.

All in all, representations derived using PCC for feature
reduction perform worse than those using RDP. Yet PCC-
reduced data retain less than half of the wavelengths for RDP-
reduced one. This would allow for less expensive spectroscopy,
and therefore more and more precise measurements.

A word of caution: all the dimensionality reduction methods
in this work assume directly or indirectly that there is a
semantic connection between adjacent features. In fact, they
all exploit the fact that significant changes between adjacent
features mean that the feature should be kept. While they are
therefore well-suited to the kind of spectrographic data that
we have explored in this work, different kinds of descriptors
might benefit less from the proposed method.

VIII. CONCLUSION AND PERSPECTIVES

Detecting nutrient deficiencies is a major challenge of
sustainable agriculture since it allows to improve soil quality
by bringing plant nutrients as much as necessary but as little
as possible. In this paper, we have discussed experiences
with a real-life agronomic data set. Our industry partners
approached us with certain preconceived notions about their
spectroscopy data, and a concrete problem setting: predicting
nutrient deficiencies during plant development, ideally quickly,
reliably, and at not too high cost.

So far, this problem setting is underexplored in the literature,
and we therefore attacked it from different angles. We first
looked at whether it is in fact possible to predict deficiencies
early, and find that (at least under controlled conditions) high-
quality predictions are possible less than a week after onset
of the deficiency. A second question was to what degree defi-
ciencies are expressed in the plant’s leaves. According to our
partners’ intuition, leaves that mainly grew in a nutrient-rich
environment should be useless in terms of identifying recently
arrived deficiencies, pushing back the detection time. As we
could show empirically, however, this intuition is somewhat
incorrect, meaning that identification and correction should
be possible much earlier than assumed. This result underlines
the bias that can be introduced in spite of themselves by the
experts on the data and we think that this remark can be
generalized to many other problems.

Finally, we explored options for tweaking the data to
improve classification accuracy and/or reduce the cost of future
data acquisition. By exploring two dimensionality reduction
techniques (RDP and PCC), we proposed a new data repre-
sentation that allows to improve on the results on the raw data
while reducing the number of wavelengths used to describe the
data by two thirds. The latter, while losing somewhat in terms

of predictive accuracy, halves the number of wavelengths RDP
yet again, which could allow a much cheaper data acquisition
process, allowing the analysis of more samples and more
precise measurements.

While we have shown how to apply different preprocessing
techniques to this kind of data, we need to go further. An
important bottleneck is simply data: after all, we were in the
fortunate situation that the industry partners we collaborated
with have their own experimental greenhouse but even with
this situation, we had only access to ~1300 data points for
the spectral data. As a next step we will design further
greenhouse experiments in collaboration with our partners,
analyzing samples based on the results of the work described
in this paper, i.e. measuring smaller ranges of wavelengths.

An additional direction we explored, but do not report on
the paper, is that of subgroup discovery. Subgroup discovery is
the task of identifying descriptions that describe subsets of the
data in which a value of a target variable is over-represented
in comparison to the full data. Finding combinations of wave-
lengths whose values are characteristic of certain deficiencies
could allow the construction of specialized sensor setups that
involve only a small range of wavelengths, and in addition
offer interpretable patterns that could help in understanding the
effects of deficiencies in more detail. Unfortunately, straight-
forward application of an off-the-shelf subgroup discovery
system, while producing intriguing patterns, did not yield sat-
isfactory results yet. Between descriptions that are not specific
enough and too much redundancy in the result set, we could
not properly characterize deficiency conditions. We intend to
explore this direction with a more tailor-made solution going
forward.
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