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Abstract. The usual data mining setting uses the full amount of data to
derive patterns for different purposes. Taking cues from machine learn-
ing techniques, we explore ways to divide the data into subsets, mine
patterns on them and use post-processing techniques for acquiring the
result set. Using the patterns as features for a classification task to eval-
uate their quality, we compare the different subset compositions, and
selection techniques. The two main results – that small independent sets
are better suited than large amounts of data, and that uninformed selec-
tion techniques perform well – can to a certain degree be explained by
quantitative characteristics of the derived pattern sets.

1 Introduction

Data mining essentially comes in two flavors, descriptive mining, finding de-
scriptions of the data, and predictive mining, constructing features for effective
classification. In predictive mining, class-correlating patterns, patterns showing
strong correlation with a class value, are often a good choice. No matter the
reliability of statistic measures, however, they can still fall prey to over-fitting,
which in turn may harm classifiers. This becomes even more problematic if the
amount of patterns is large, or pairs and combinations of patterns reinforce each
other’s bias.

In a recent work [3], the effect of decreasing redundancy between patterns on
the accuracy of classifiers using those particular features was evaluated. While
we could show that reducing redundancy – in some cases rather strongly – did in
fact improve accuracy, we used the entire data set set for mining patterns which
we then filtered. This setting, which is the standard data mining setting, is
well-suited for descriptive mining. Predictive mining is closer related to machine
learning, however, which knows different techniques using parts of the labeled
data for verification purposes of found patterns/built classifiers.

We therefore take a page out of the playbook of ML, first mining several sets
of correlating patterns, and then using different criteria to create final result sets
from them. These are used as features for learning an SVM [5] classifier.

The paper is structured as follows: In the next section, we explain the basic
mechanisms for mining patterns, creating subsets of the data for mining and
selection purposes, and lay out several selection methods for deriving the final
result set. In Section 3, we report on the experimental evaluation of the proposed
methods before concluding in Section 4.



2 Mining and Merging Correlating Patterns

We start from set of instances Dm each being labeled with one of the class labels
{pos, neg}. In this set Dm we search for patterns drawn from a language L. More
specifically for a set of k patterns whose occurrence on the instances correlates
best with the presence of the target class according to χ2 [4]. Further we require
the found patterns to be free according to [1].

The solutions to the mining task can then be conveniently modeled using

T hk(Dm) = {p ∈ L | p among the k-best free patterns on Dm w.r.t. χ2}

As said before, this is the standard data mining setting which operates on
the full dataset Dm, which we will use as a base-line technique. In the following
sections we propose different methods for selecting the final pattern set.

2.1 Using a validation set

The most basic approach consist of using a certain fraction q of the total data
Dm as the actual mining set Dm, with size q · |Dm|. The rest would be used as
a validation set D̂m = Dm \ Dm, of size (1 − q) · |Dm|. After termination of the
mining process on Dm, the km patterns T hkm

(Dm) returned by the miner are
evaluated on D̂m and re-ranked, according to their correlation score χ2 achieved
on this validation set. Out of those the ks best scoring patterns are returned to
the user. It can easily be derived that ks should be chosen such that ks < km

since for km ≤ ks the validation scores (and re-ranking) have no effect on the
selection of patterns. The final result set is then

valks
(T hkm

(Dm), D̂m) = {p ∈ T hkm
(Dm) | p in the ks-best patterns on D̂m w.r.t. χ2}

Given the use of statistically significant patterns, one would expect a certain
robustness against statistical quirks. The degree to which the full distribution
can be modeled by a subset could however very well be governed by q. A not
unusual choice for q in the machine learning literature is 2

3 .

2.2 Aggregating subset results

In the second approach, subsets Di
m of Dm are created, and the top km patterns

mined from each of them. For the union of their results Φall =
⋃

i T hkm
(Di

m) we
know that |Φall| ≥ km. All patterns p ∈ Φall are re-evaluated according to some
aggregation metric, and a subset (e.g. the top-km patterns) returned to the user.

This approach is illustrated in Figure 1, with merge denoting the merging/re-
evaluation step. What should be immediately obvious from this figure is that
this kind of approach lends itself to distributed/parallel mining, although the
merging step needs to be performed on one particular site.

There are two main decisions that influence the result of this approach,
namely the choice of subsets and the aggregation metric used. The size of the
final set to be returned is obviously also important but has less effect than the
afore-mentioned two choices, we believe.
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Fig. 1. The aggregated subset mining technique

Formation of subsets We investigate two approaches to forming subsets of
Dm. Their main difference lies in whether there is overlap among subsets used or
not. The straightest-forward approach consists of segmenting Dm into f disjunct

folds Fi. We define D̂i
m = Fi and D

i

m =
⋃

j 6=i Fj . In both cases all instances in
the data have an effect on the final result with the same weight.

Aggregation metrics The goal of any aggregation metric used lies in ranking
the patterns in Φall by using information from all subsets Di

m mined on. To this
end, we propose three metrics:

1. A first measure takes the form µcount(p) = |{i : p ∈ T hkm
(Di

m)}|
Basically µcount counts for each pattern p in how many of the Di

m it was
found among the top-km. This measure only checks whether a pattern was
mined at all, however, not what its particular rank was in the respective
result sets.

2. Hence, a second metric, µrank would consist of the following:

µrank (p) =
1

f

∑

i

rank(p,Di
m)

with

rank(p,D) =

{

1 + km − inf{k | p ∈ T hk(D)} if p ∈ T hkm
(D)

0 otherwise

taking a pattern’s “local” quality into account.
3. A final metric, µχ2 would take the form: µχ2(p) = (χ2 of p on Dm) calcu-

lating the score for each pattern according to χ2 on the entire set Dm. This
metric is related to the validation approach of 2.1, with the difference that
here the data on which the pattern was mined is also used for validation.



Selection criteria Due to the fact that |Φall| ≥ km, one can simply return the
top-km after the re-ranking via one of the metrics µ(p). Thus, given a value km, a
metric µ, and a set of subsets M = {Di

m}, our goal is to select ϕkm
(M, µ) ⊆ Φall

such that the pi∈ϕkm
(M, µ) are the km highest ranked pattern in Φall w.r.t. µ.

Additionally, this framework does allow for a second k-value (ks), similar to
the one of the validation set approach which is used to define the size of the final
result set leading to Φall =

⋃

i T hkm
(Di

m) with ϕks
(M, µ) ⊆ Φall.

3 Experimental Evaluation

For the experimental evaluation, we arbitrarily picked 8 data sets from the
NCI-60 data set collection [6] and mine sequential patterns on them. Each
has about 3500 instances (one outlier having only 2778) with a class distri-
bution of 50−53% (another outlier of 63.7%) for the positive class. We chose
km ∈ {10, 25, 50, 75, 100}, giving a reasonable range of values across which to
compare. We evaluated two aspects of the outlined techniques experimentally:

Q1 Quantitative Analysis: The effect of different subset formation strategies
and subset sizes. Specifically, we consider similarity between the pattern sets
finally selected and the ones mined in the standard setting.

Q2 Qualitative Analysis: The effect of different aggregation methods on the
quality of the pattern sets selected.

To get a robust accuracy estimate, a 10-fold cross-validation was performed. All
folds – both for accuracy and selection purposes – were stratified. As mentioned
above, an SVM classifier was used for accuracy estimates. SVMs possess cer-
tain inherent feature selection capabilities, giving low-relevance features small
weights. In addition, an SVM attempts to find a separating hyperplane with a
maximal margin to both classes. Both of these characteristics guard against over-
fitting at the classifier level, allowing to evaluate the quality of the feature set.
The SVM’s C parameter was tuned via a 5-fold cross-validation on the training
data, with potential values 2i, i ∈ [−2, 14].

3.1 Validating patterns on additional data

In the first setting, using a validation set for assessing found patterns’ quality, we
evaluated two stratified random splits of the mining data, with q = 2

3 and q = 4
5 ,

respectively. As to the top-k parameters, km, ks ∈ {10, 25, 50, 75, 100} : km > ks.

Quantitative results A useful measure for assessing quantitative character-
istics is that of overlap. Given two sets of patterns S, S′, we simply define
ovlp(S, S′) = |S ∩ S

′|. For evaluating the quantitative characteristics of selected
pattern sets, we calculate the overlap with the standard mining operation (de-
noted by standard in Table 1): ovlp(valks

(T hkm
(Dm), D̂m), T hks

(Dm)), and
with the non-validated pattern set: ovlp(valks

(T hkm
(Dm), D̂m), T hks

(Dm)) (de-
noted by non-validated).



non-validated q = 2

3
standard q = 2

3
ks/km non-validated q = 4

5
standard q = 4

5

3.1 ±1.1005 2.7 ±1.05935 10/25 3.6 ±1.26491 3.7 ±0.823273
0.7 ±0.948683 0.5 ±0.971825 10/50 1.2 ±1.31656 1.4 ±1.17379
0.2 ±0.421637 0.2 ±0.421637 10/75 0.6 ±0.966092 0.7 ±0.948683
0.1 ±0.316228 0 ±0 10/100 0.3 ±0.674949 0.3 ±0.674949
11.1 ±1.96921 10 ±2 25/50 11 ±2.16025 10.9 ±2.55821
6.3 ±1.82878 6.1 ±2.33095 25/75 6.3 ±2.11082 6.3 ±1.88856
4.3 ±0.948683 4 ±1.56347 25/100 4 ±1.33333 4.1 ±1.59513
32.5 ±1.71594 28.5 ±2.4608 50/75 32.6 ±1.7127 30.8 ±1.68655
24 ±1.69967 21.6 ±1.57762 50/100 22.9 ±2.37814 22.5 ±2.83823
56.8 ±1.8738 48.3 ±3.56059 75/100 56.3 ±1.41814 53.4 ±1.77639

Table 1. Overlap between the validated sets and the non-validated/standard setting, respectively

The pattern set overlap values show that the greater km for a given ks, the
smaller the overlap between pattern sets becomes. This means that patterns
are ranked rather differently on the validation set although similar underlying
distributions should be expected. Overlap is of course higher for comparison
against the non-validated set since the validated set is constructed from this. It
is interesting however, that the difference between comparison to the standard
and the non-validated setting are not that great. Furthermore, there is no big
change between the results for q = 2

3 and q = 4
5 .

Qualitative results Regarding Q2, we use the selected features to encode Dm

as binary vectors and evaluate the SVM’s performance. The main focus of our
comparison lies on determining which q is better suited to the mining of “good”
features, and whether there are particularly well-suited km − ks combinations.

We report the results on a representative data set in Table 2. Unfortunately,
the answer seems to be that neither q is a good choice. Using a validation set
selects features that are less well suited for classification than mining on the
full data. This indicates that randomly splitting the data can give rise to so
radically different distributions (hinted at in the quantitative analysis) that top-
k selections based on χ2 becomes meaningless.

3.2 Aggregated pattern selection

For the second setting –using different subsets to mine the data and using ag-
gregation metrics– we chose f ∈ {3, 5, 7}, thus allowing for different sizes of Dm.
In addition to the standard setting, we compare to a post-processing method
which uniformly picks ks patterns from Φall at random. Since this method does
not use explicit information on patterns’ quality, nor their relationship, we use
it as a baseline to see whether the better informed methods enjoy an advantage.

ks 10 25 50 75
Standard setting (full Dm)

km = ks 59.752 ± 1.974 60.949 ± 2.361 62.205 ± 3.168 64.859 ± 2.479
Validation setting q = 0.66

km=25 54.507 ± 1.358 − − −
km=50 54.65 ± 2.590 55.134 ± 2.389 − −
km=75 54.565 ± 1.605 55.704 ± 1.690 59.152 ± 3.848 −
km=100 52.997 ± 0.768 56.732 ± 2.492 56.017 ± 4.070 57.617 ± 5.830

Validation setting q = 0.80
km=25 53.139 ± 1.172 − − −
km=50 51.972 ± 0.895 55.163 ± 2.890 − −
km=75 52.256 ± 0.061 54.166 ± 2.515 57.928 ± 3.547 −
km=100 52.227 ± 0.140 53.452 ± 2.214 58.015 ± 2.450 61.293 ± 2.243

Table 2. Predictive accuracies of the validation settings and the standard setting (top row)



f Overlap |Φall|/km max
p∈Φall

µcount (p) max
p∈Φall

µrank (p) min
p∈Φall

µrank (p)

km = 10
3 3.5 ±1.178 2.000 ± 0.200 3 ± 0.000 7.800 ± 1.033 0.333 ± 0.000
5 1.1 ±0.567 3.260 ± 0.302 4.2 ± 0.632 6.260 ± 0.766 0.200 ± 0.000
7 0.3 ±0.483 4.630 ± 0.434 4.7 ± 0.483 4.814 ± 0.919 0.143 ± 0.000

km = 25
3 8.7 ±2.213 2.136 ± 0.163 3 ± 0.000 22.800 ± 1.033 0.333 ± 0.000
5 4.7 ±1.494 3.428 ± 0.204 4.8 ± 0.422 19.420 ± 1.459 0.200 ± 0.000
7 3.7 ±1.159 4.668 ± 0.305 5.8 ± 0.632 15.614 ± 1.355 0.143 ± 0.000

km = 50
3 19.6 ±2.756 2.114 ± 0.131 3 ± 0.000 47.800 ± 1.033 0.333 ± 0.000
5 11.3 ±1.702 3.290 ± 0.208 5 ± 0.000 43.820 ± 2.165 0.200 ± 0.000
7 8.9 ±1.370 4.454 ± 0.367 6.6 ± 0.699 36.700 ± 2.203 0.143 ± 0.000

km = 75
3 32 ±3.126 2.056 ± 0.123 3 ± 0.000 72.800 ± 1.033 0.367 ± 0.105
5 19.7 ±2.496 3.167 ± 0.171 5 ± 0.000 68.760 ± 2.299 0.200 ± 0.000
7 15 ±1.763 4.389 ± 0.283 6.7 ± 0.675 60.171 ± 4.035 0.143 ± 0.000

km = 100
3 43.3 ±5.375 2.018 ± 0.128 3 ± 0.000 97.800 ± 1.033 0.333 ± 0.000
5 26.7 ±2.945 3.114 ± 0.171 5 ± 0.000 93.760 ± 2.299 0.200 ± 0.000
7 20.5 ±1.715 4.321 ± 0.234 6.8 ± 0.422 84.071 ± 5.767 0.143 ± 0.000

Table 3. Quantitative characteristics for pattern sets mined on D̂i
m

Quantitative results Regarding Q1 and given similar results for all data
sets, we report quantitative characteristics of Φall in Tables 3 and 4 on one
example. For both alternatives regarding construction of the Dm we list the
minimum and maximum µcount and µrank for patterns in Φall, |Φall|/km, and
ovlp(ϕkm

(M, µσ), T hkm
(
⋃

M)). We would expect that:

– ovlpDm
≥ ovlpD̂m

– Larger Dm give similar results as the standard setting
– |Φall,D̂m

|/km ≫ |Φall,Dm
|/km – Smaller Dm give a larger variety of patterns

– minp∈Φall
µcount (p) > 1 – No pattern appears in only one result set

– maxp∈Φall
µcount(p) ≈ f – The best patterns generalize over most Dm

– minp∈Φall
µrank (p) > 1/f – No pattern is always ranked worst

– maxp∈Φall
µrank (p) ≈ km – The best patterns generalize over most Dm, ap-

pearing with a high ranking

The evaluation shows that most of our expectations hold, the only serious ex-
ceptions being our assumptions about the “worst” patterns – which often appear

f Overlap |Φall|/km max
p∈Φall

µcount (p) max
p∈Φall

µrank (p) min
p∈Φall

µrank (p)

km = 10
3 6.6 ±1.074 1.440 ± 0.150 3 ± 0.000 9.033 ± 0.508 0.367 ± 0.105
5 6.5 ±0.849 1.430 ± 0.125 5 ± 0.000 9.420 ± 0.416 0.260 ± 0.135
7 6.6 ±1.429 1.400 ± 0.176 7 ± 0.000 9.500 ± 0.318 0.157 ± 0.045

km = 25
3 13.6 ±1.429 1.644 ± 0.125 3 ± 0.000 24.033 ± 0.508 0.333 ± 0.000
5 13.6 ±1.264 1.660 ± 0.080 5 ± 0.000 24.420 ± 0.416 0.220 ± 0.063
7 12.7 ±1.766 1.684 ± 0.115 7 ± 0.000 24.500 ± 0.318 0.157 ± 0.045

km = 50
3 28.1 ±2.424 1.648 ± 0.088 3 ± 0.000 49.033 ± 0.508 0.333 ± 0.000
5 29.1 ±1.286 1.632 ± 0.067 5 ± 0.000 49.420 ± 0.416 0.200 ± 0.000
7 29.8 ±1.549 1.578 ± 0.066 7 ± 0.000 49.500 ± 0.318 0.171 ± 0.090

km = 75
3 45.6 ±1.837 1.599 ± 0.082 3 ± 0.000 74.033 ± 0.508 0.433 ± 0.161
5 47 ±2.494 1.545 ± 0.068 5 ± 0.000 74.420 ± 0.416 0.280 ± 0.103
7 47.3 ±2.830 1.512 ± 0.073 7 ± 0.000 74.500 ± 0.318 0.157 ± 0.045

km = 100
3 61.8 ±3.521 1.535 ± 0.067 3 ± 0.000 99.033 ± 0.508 0.333 ± 0.000
5 64.3 ±3.128 1.480 ± 0.064 5 ± 0.000 99.420 ± 0.416 0.320 ± 0.140
7 65.6 ±3.893 1.456 ± 0.082 7 ± 0.000 99.500 ± 0.318 0.157 ± 0.045

Table 4. Quantitative characteristics for pattern sets mined on D
i

m



f 3 5 7
ks 10 25 50 75 100 10 25 50 75 100 10 25 50 75 100

D̂m, chi 4 0 11 ◦ 3 4 5 1 14 ◦ 1 4 4 1 13 ◦ 3 1

D̂m, random 41 41 44 43 53 ◦ 53 56 50 59 ◦ 47 44 50 54 58 ◦ 51

D̂m, rank 51 ◦ 43 39 49 34 54 51 52 52 61 ◦ 44 54 ◦ 52 52 52

D̂m, top 44 52 ◦ 49 40 35 52 ◦ 44 47 45 37 49 ◦ 44 38 39 36

Dm, chi 8 8 7 6 13 ◦ 9 7 17 ◦ 7 11 7 7 10 ◦ 7 10

Dm, random 28 50 ◦ 44 43 34 34 44 ◦ 34 38 30 25 48 ◦ 44 38 41

Dm, rank 38 26 42 ◦ 34 32 29 24 26 35 36 ◦ 40 ◦ 32 33 30 36

Dmtop 43 ◦ 42 26 40 27 23 33 ◦ 28 26 24 35 ◦ 29 22 32 23
baseline 31 26 26 30 56 ◦ 29 28 20 25 38 ◦ 40 ◦ 23 22 29 38

Table 5. Total accuracy wins for aggregation techniques and the baseline approach for combinations
of different km-values and f settings

in only one T hk(Dm). This indicates that even when using correlation measures,
different data sets quickly lead to differing mining results. It is interesting to see
that overlap, |Φall|/km, and maxp∈Φall

µrank (p) are rather stable for the Dm

setting for a given km, but depend on the value of f for the D̂m setting.

Qualitative results Given the findings above, the more interesting question
is which of the proposed techniques select patterns which are useful features for
classification. Again, we used an SVM and 10-fold cross-validation to estimate
the quality of pattern sets. Inasmuch as differences in accuracy were almost never
significant, we omit the actual accuracy estimates here. Instead we report how
the different methods (each time a combination of Dm composition and selection
method) compare given a fixed km ∈ {10, 25, 50, 75, 100} and f ∈ {3, 5, 7} (Table
5). Note that the table shows the total number of wins for each approach.

Each number denotes how often a particular technique has performed better
than any other on any data set. We evaluated 9 techniques against each other on
8 data sets. Thus any given approach can have maximally 64 wins. Bold values
denote the best-performing technique, given a km and value of f , while a circle
(◦) shows for which km a technique performed best, given f .

The first, somewhat surprising, insight is that using large, overlapping Dm,
which should recreate phenomena over different mining situations, does not lead
to good pattern selection. Dm settings never perform best for a given km and
usually perform better if only relatively few patterns are selected, suggesting
that resampling does too little to counteract bias. Given that resampling forms
the basis for, e.g., Bagging [2] techniques, we did not expect this outcome.

It is also noticeable that the standard approach produces suboptimal pattern
sets. Only once is this baseline approach best, for f = 3, meaning relatively large
folds where informed selection techniques such as count and rank do not enjoy
a large advantage. Even there it is closely followed by the random selection -
essentially the least informed one. This means that an unwritten paradigm of
data mining (using large amounts of data to the fullest leads to meaningful
patterns) turns out to be questionable in this case.

The random technique is the big winner of the entire comparison, given its
simplicity. While reducing redundancy entirely by chance, it performs well in 4
of 15 settings. It is outperformed by rank (7 wins), but count is weaker (3 wins).
Moreover, adding up all wins by technique, random outperforms rank and count ,
slightly for D̂m settings, more pronounced for Dm. So the information which



patterns generalize well over different subsets does not give a strong advantage
in our case study. However, the variety of patterns caused by several subsets is
helpful. Re-evaluating patterns’ χ2 score does again not work satisfactory.

4 Conclusions

In this work, we investigated ways of using data for pattern mining to produce
good features for classification of complex data. Two main insights arise from
the experimental evaluation: 1) usual assumptions on how to best use data in
data mining turn out to be questionable. Neither the standard data mining set-
ting (using large data sets to smooth over-fitting effects), nor a single mining
and validation set, nor re-sampling techniques producing overlapping mining
sets to uncover true underlying phenomena proved to be the most effective use.
The best usage we observed consisted of splitting data into small, independent

subsets instead, mining patterns on these and evaluating those patterns’ gener-
alization capability on different subsets. 2) the actual selection method matters
far less than could be expected. Given a large enough variety of patterns, pick-
ing patterns at random proved to be rather effective, as proved the average rank
selector, which picks patterns that were highly ranked at least once, even if not
in all subsets. Using a validation set (either independent or involving the data
patterns were mined from) for reassessing the χ2-score did not work satisfactory.

An unexpected boon of these results is that pattern mining can apparently be
easily parallelised without having to fear the loss of valuable information in terms
of patterns. Quite contrary, we have seen that merging pattern sets extracted
from small independent data sets improves the merit of the found patterns.

There are still several open questions to pursue w.r.t. the evaluated tech-
niques. As we have observed, the interplay between km and kv for the validation
set technique has an effect on the composition of resulting pattern sets, and
different km seem to favor certain aggregation techniques. It would therefore be
valuable to perform stability studies, e.g. investigating whether final pattern sets
stabilize for a certain value of km. Additionally, there are potential further se-
lection criteria which time and space constraints did not allow us to investigate.
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