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Abstract. In structure-activity-relationships (SAR) one aims at finding
classifiers that predict the biological or chemical activity of a compound
from its molecular graph. Many approaches to SAR use sets of binary
substructure features, which test for the occurrence of certain substruc-
tures in the molecular graph. As an alternative to enumerating very
large sets of frequent patterns, numerous pattern set mining and pattern
set selection techniques have been proposed. Existing approaches can be
broadly classified into those that focus on minimizing correspondences,
that is, the number of pairs of training instances from different classes
with identical encodings and those that focus on maximizing the num-
ber of equivalence classes, that is, unique encodings in the training data.
In this paper we evaluate a number of techniques to investigate which
criterion is a better indicator of predictive accuracy. We find that min-
imizing correspondences is a necessary but not sufficient condition for
good predictive accuracy, that equivalence classes are a better indica-
tor of success and that it is important to have a good match between
training set and pattern set size. Based on these results we propose a
new, improved algorithm which performs local minimization of corre-
spondences, yet evaluates the effect of patterns on equivalence classes
globally. Empirical experiments demonstrate its efficacy and its superior
run time behavior.

1 Introduction

The field of structure-activity relationships deals with the problem of predicting
the biological or chemical activity of molecules. For example, a researcher might
want to learn a model predicting whether or not a particular compound inhibits
tumor growth. Such a model could then be used to reduce the amount of in-
vitro experimentation. Since the molecular structure of a molecule can be easily
encoded by a labeled graph, structure-activity learning problems have been a
fertile field for structured data mining. Typically, data mining in this context
starts from a data set of molecular compounds that fall into two activity classes,
e.g. inhibiting cancer growth or not inhibiting it. Then, a first mining step gen-
erates a set of patterns. The patterns in this set are subsequences, subtrees, or



subgraphs of the molecular graphs in the database. This means that one can
use the patterns as description features for classification. In this representation
a molecular graph is re-encoded as a bit-vector where each bit indicates presence
or absence of a specific pattern. Finally, this propositionalized data representa-
tion can then be handled by established machine learning techniques such as
Support Vector Machines (SVM) to learn a classifier.1

The traditionally first approaches to the feature generation problem involved
general substructure mining tools. For instance, some systems just generate all
patterns whose occurrence frequency exceeds some predefined threshold. This
was motivated by the use of fingerprints in bio-chemistry. In more recent de-
velopments, a variety of techniques [10, 14, 8, 2, 4, 16, 1, 5] have been proposed
to avoid the unnecessarily large feature sets and long runtimes of these early
approaches. Newer approaches usually either post-process a set of patterns to
select a relatively small subset or iteratively refine a candidate pattern set so
that some quality measure is optimized.

Finding smaller pattern sets is motivated by the observation that popular
similarity measures fail to work well, if the training instances are represented by
many redundant features that check for highly similar substructures.

There is, however, less agreement on a second question connected to finding
good pattern sets for the encoding of molecules: Is it more important that

1. instances belonging to different classes are encoded differently from each
other or that

2. instances are generally encoded differently from each other, no matter the
class label?

The approach whose selection strategy is driven strongest by the former option
is the fCork technique introduced in [16] while the post-processing techniques
proposed in [10] and [2] mainly focus on the latter one. Other techniques con-
sider the two extremes to differing degrees. More generally, it is not very well
understood which quality measures a pattern set should optimize in order to
lead to classifiers with heigh predictive accuracy.

Our contribution to deciding this question in this paper is two-fold:

i We describe and compare several state-of-the-art approaches in Section 3 and
evaluate the generated feature sets according to various quality measures in
Section 4. In particular, we investigate whether the number of correspon-
dences, a class-dependent measure, or the number of equivalence classes, a
class-agnostic measure, are better indicators of good prediction accuracy.

ii Based on the obtained insights (and the identification of the currently most
successful technique), we propose a new iterative mining technique in Sec-
tion 5 and show that it improves on existing techniques in a variety of ways
in Section 6.

The quality measures used in the paper to rate pattern sets are introduced in
Section 2 and we present our conclusions in Section 7.

1 Some approaches to structural prediction [7, 17, 1] integrate the mining step and
learning step.



2 Quality Measures for Pattern Sets

Let us start by introducing the notions and quality measures for pattern sets
used in the rest of the paper. Given a data set D, a pattern language L and
a pattern constraint c, the result of a constrained mining operation is a theory

T h(D,L, c), namely a set of patterns satisfying the constraint(s) c (cf. [11]). This
is e.g. the usual approach in frequent pattern mining. If the pattern constraint
employed is a measure φ and the goal is to mine the top-k patterns according
to this measure, the resulting theory is denoted by T hk(D,L, φ).

Let each pattern p be associated with a function p : D 7→ {true, false}.
We define p(t) = true if p matches t, and p(t) = false otherwise. Associating
a pattern with this boolean function does allow us to consider each pattern
as a binary feature. In addition, we assume a binary class labeling function
c : D 7→ {+,−}. Given a pattern set S ⊆ L, we define an equivalence relation ∼S

on D as:
∼S ≡ ∀ti, tj ∈ D : ti ∼S tj ⇔ ∀p ∈ S : p(ti) = p(tj)

Thus, two data instances are considered to be equivalent under S if they share
exactly the same patterns. Using the equivalence relation ∼S, an equivalence

class or block is defined in the following way:

[t] =: {t′ ∈ D : t′ ∼S t}

The partition or quotient set of D over S finally, is defined as:

P = D/ ∼S= {[t] : t ∈ D}

The partition thus induced by a pattern (and therefore feature) set corre-
sponds to the number of different bit-strings that can be presented to a machine
learning technique attempting to build a classifier based on them. Instances
assigned to the same block are effectively indistinguishable and will therefore
be classified in the same way. Some systems therefore maximize the number of
equivalence classes in the pattern sets:

eqD(S) =| {D/ ∼S} |

While this might be slightly worrying in case of large blocks consisting of only one
class (lump judgments can be problematic to generalize), it is clearly counter-
productive if both classes are present in a block since this introduces unavoid-
able errors. The authors of [16] define the concept of correspondence: Two data
instances t1, t2 form a correspondence under the equivalence relation ∼S iff
c(t1) 6= c(t2) ∧ t1 ∼S t2. Here, c(t) denotes the class label of a training instance.
With this, the number of correspondences is:

corrD(S) =
∑

Bi∈D/∼S

| {t ∈ Bi : c(t) = +} | · | {t ∈ Bi : c(t) = −} |

A pattern set which minimizes the number of correspondences provides more
information to the learning algorithm, because it encodes the specific properties



better that make each example differ from the other ones. On the other hand,
this might lead to overfitting or large pattern sets. To overcome this, the authors
of [10] use joint-entropy as a pattern set quality measure:

jeD(S) = −
∑

Bi∈D/∼S

| Bi |

| D |
log2

| Bi |

| D |

Finally, the authors of [14] use a dispersion score to rate the quality of a pattern
set:

dispD(S) =
1

| D |2

∑

pi,pj∈S

(| {t ∈ D : pi(t) = pj(t)} | − | {t ∈ D : pi(t) 6= pj(t)} |)2

Since this score grows with the size of the pattern set, we use the following
normalized version to compare pattern sets in Section 4:

dispNormD(S) = dispD(S)/(| S | · | S | −1)/2

To evaluate and compare pattern sets generated by different approaches we em-
ploy a SVM with the popular Tanimoto kernel. Given two molecules encoded as
bit-vectors x, y ∈ {0, 1}d using d mined patterns, it is defined as:

KT (x, y) =

∑d
1
min{xi, yi}∑d

1
max{xi, yi} −

∑d
1
min{xi, yi}

Obviously, if both vectors’ components are mostly 1 and only a few 0s distinguish
them, even kernel values for different instance pairs will be close to each other.
Such badly scaled kernels are known to be problematic for successful prediction.

3 Existing Approaches

The work concerned with finding good pattern sets for classification falls into
two categories: 1) post-processing of a set of patterns, which is similar to feature
selection techniques from machine learning, and 2) iterative pattern set mining
techniques that extend and improve a candidate pattern set.

The first type of approaches has the advantage that only a single pattern
mining run has to be performed. To ensure that the variety of patterns is high
enough to enable the extraction of a suitable subset, it is usually necessary to
mine a very large amount of patterns. This makes the post-processing step (and
possibly the mining step) potentially expensive, especially if some features are
not informative on their own, but lead to high predictive accuracy when consid-
ered together. In [10], this problem is addressed by assuming a size-constraint
that is always present. The authors discuss several desirable measures and dis-
cuss their potential mutual exclusivity. In a related work, the authors gave an
algorithm for finding pattern sets maximizing the joint entropy (JE ) criterion.
JE effectively measures the ability of a pattern set to induce a partition of equally
sized equivalence classes.



Most existing systems differ in the search strategy and the criterion used
to rate the quality of a pattern set. For instance, the system presented in [4]
uses greedy search and a supervised quality measure, which is based on the
correlation of a pattern with a class and the similarity to earlier patterns. The
search uses a database coverage constraint to control pattern set size. In this
manner, it minimizes the expected number of correspondences and maximizes
the expected number of equivalence classes. The approaches discussed in [2] are
also based on greedy search, but use an unsupervised quality measure, which
quantifies how well sets of patterns partition the data, without any reference
to a class label. The search strategy in [8], finally, is a local search technique,
which selects a non-redundant set of patterns from randomly sampled maximal
graph-structures.

The second style of structured pattern mining approaches uses an iterative
approach, where a candidate pattern set is extended step by step. Iterative min-
ing has the advantage that the mining runs in later iterations can be tailored
towards the shortcomings of the previously generated pattern sets. This is in
contrast to post-processing, where one assumes (or hopes) that the number of
generated patterns is large enough to allow the extraction of an informative
subset. On the other hand, there is often no clear way to identify how many
iterations will be needed to mine a useful set, and the cumulative computational
cost of several pattern mining runs can become rather high. Iterative mining
can be performed in two settings: 1) as sequential mining: mining is performed
strictly sequentially, only one mining process per iteration. This leads to a clear
relationship among patterns: each pattern is influenced by those that were mined
before it and influences those mined after it. For efficient handling, some algo-
rithms modify the underlying graph database between iterations. The second
setting is that of 2) parallel mining: in any iteration several mining processes
can run in parallel. generally, the results of one mining process are used to split
the database into two or more parts, so the mining steps in later iterations work
on smaller subsets of data instances.

The two existing sequential approaches differ somewhat. The search strat-
egy in [14] is stochastic local search to maximize the class-correlated dispersion

score of patterns with regard to patterns mined in earlier iterations. This score,
similar to the approach in [4], trades off class-correlation with the similarity
of patterns with regard to coverage in the data, or in other words, the min-
imization of correspondences and the maximization of equivalence classes. In
[16], mining for patterns themselves is performed exhaustively using an upper
bound and minimum support criterion to heuristically optimize the submodular
correspondence-based quality criterion. Maximization of equivalence classes, if it
happens at all, is only a side effect of the process. The combination of exclu-
sive focus on correspondence minimization and sequential mining leads to very

compact sets of patterns.

The two approaches falling into the latter group [1, 5], use the usual deci-
sion tree induction mechanism: a single pattern is mined using information gain

and the data split according to matching of the pattern, before the algorithm



recurses on the derived subsets. Since information gain rewards class discrimi-
nation, repeated applications will lead to the minimization of correspondences
while the fact that mining is performed on subsets of the data can lead to the
split of instances from the same class in other parts of the data, thus increasing
the number of equivalence classes.

4 Comparison of Systems and Quality Measures

In this section we describe experiments comparing the various approaches out-
lined earlier and the different quality measures that are used in literature to rate
pattern sets for classification. In particular, we investigate joint entropy, the
normalized and unnormalized dispersion score, the number of correspondences

and the number of equivalence classes. The main goal here is to explore which
approaches and quality measures lead to pattern sets with high predictive ac-
curacy as measured by the AUC of the final classifier. The trends identified in
these experiments can then be used to design fast algorithms generating small
feature sets with good predictive accuracy. We investigate the following systems:

– Baseline. The 500 most general (shortest) free graph patterns mined under
a minimum support threshold of 5%.

– Picker∗. This is a technique introduced in [2], using the inference mea-
sure and no threshold. The underlying pattern set consists of all free graph
patterns mined with minimum support 5%, i.e. a superset of the baseline.

– Disp. The stochastic local search technique from [14], optimizing class-
correlated dispersion score.

– fCork as introduced in [16], whose authors supplied us with an executable.
Since unconstrained experiments using this technique did not terminate on
the NCI data and the cancer data set, a 5% minimum support constraint
was used.

– DTM. This is an implementation similar to MbT, introduced in [5]. We
were unfortunately not able to obtain an executable of the algorithm from
the authors of this paper. Since we had published a similar technique in
2005 under the name Tree2 [1], however, we extended our implementation
to work on graph-structured data and discarded the decision tree after min-
ing. Based on past results [3], we chose to mine sequential patterns which
perform as well as graph-structured patterns. We will refer to this technique
as “decision tree-like miner” (DTM) in the following.

Generally, we chose the parameters so that only small frequency or weak
selectivity constraints were imposed. This ensures that the systems have a large
number of candidate patterns available for inclusion. Since different methods
generate pattern sets of varying sizes, it is often difficult to compare them di-
rectly. To allow for a fair comparison, we thus sometimes cut back the number
of features to match the number produced by other techniques. Cutting-back
is done by keeping the k highest-ranked patterns/those mined in the k first
iterations, with k derived from the size of competing techniques’ output.



For the experiments, we used the data sets shown in Table 1. This includes
the NCI data sets first reported in [15] (specifically those on which fCork with
minimum support five percent terminated in reasonable time), as well as the
Blood Brain Barrier, NCTRER, Yoshida, and Cancer data sets used in [14].
To evaluate the quality of the derived encodings, we performed a 10-fold cross-
validation, using an SVM [9] with Tanimoto Kernel, with the C-parameter set
to 1.0. This value gave good performance over the entire range of data sets.

Table 1. An overview of the used data sets

Data set instances majority class

NCI 786 0 3154 1648
NCI A549 ATCC 3359 1710
NCI CAKI 1 3221 1678
NCI CCRF CEM 3131 1995
NCI COLO 205 3279 1748
NCI SF 539 3045 1728
Blood Brain Barrier 373 248
NCTRER 208 125
Yoshida 238 143
Cancer 30796 15590

As a first experiment we investigated how the number of features affects clas-
sification accuracy. If prediction accuracy increases with the number of features,
this would indicate that strict pattern set selection is misguided and permissive
feature generation approaches should be preferred. In Figure 1 we plot the aver-
age number of features selected per fold against the AUC, labeled by data set.
The plot shows that accuracy increases moderately or not at all with the num-
ber of features. It is remarkable that the Pearson correlation coefficient between
number of features and AUC is actually positive for the larger datasets (0.4 for
NCI and 0.57 for Cancer), but negative for the smaller data sets (-0.02 to -0.12
for Blood Brain Barrier, NCTRER, Yoshida). While this is not statistically sig-
nificant, it seems to be consistent with the results in [13]: pattern set size should
increase with the number of training instances, but overfitting is not as severe
as in many other classification settings.

In the second experiments, we examine which pattern set criterion is a good
indicator of prediction accuracy. Figures 2 – 5 give the scatter plots for the nor-
malized dispersion score, average joint entropy, number of equivalence classes
and number of correspondences. The results are mixed, but there are a few
interesting insights. First of all, joint entropy and the number of equivalence
classes appear to be fairly well correlated to prediction accuracy. Indeed, the fol-
lowing correlation coefficients are significant on the 99% significance level: The
correlation between joint entropy and AUC is between 0.8 and 0.95, with the
only outlier at 0.72 for the NCTRER data set. For the number of equivalence
classes, the Pearson correlation coefficient is large for the bigger data sets (>
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Fig. 1. AUC plotted against the average number of features selected

0.95 for Cancer and NCI), but still reasonable for the smaller ones (0.63-0.8 for
NCTRER, Blood Brain Barrier, Yoshida). Looking at Figure 5, one can see that
a large number of correspondences always indicates bad AUC performance. This
means a pattern mining system needs a way to minimize the number of occur-
rences to be successful. Unfortunately, it is clearly not enough to only optimize
for correspondences: there are a number of settings where pattern sets with low
number of correspondences still lead to terrible predictive accuracy. It is clear
that successful systems also need to optimize the variety within the instances of
the same class. This is what joint entropy and the number of equivalence classes
measure. Finally, the dispersion score is only slightly correlated with AUC. The
dispersion score varies between around -0.10 for the smaller data sets and around
+0.25 for the larger ones. It is noteworthy, though, that the dispersion score im-
proves if class information is included.

Overall, one can conclude that supervised pattern mining scores tend to be
better indicators of prediction accuracy and that the characteristics change be-
tween larger and smaller datasets. This means that successful techniques should
include information about the class label during pattern generation and that the
number of generated patterns should be in relation to the number of training in-
stances. To see how the evaluated methods succeed in this regard, Table 2 shows
the average rankings of different methods w.r.t. the four quantitative measures
and AUC. Highest-ranked in terms of AUC is DTM, which also ranks very high
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Table 2. The respective ranking of techniques for different criteria

AUC # equivalence classes # correspondences dispersion score joint entropy

DTM (1.44) Picker
∗ (1.7) DTM (1.6) fCork (1) Picker

∗ (1.9)
Picker

∗ (2) DTM (2) fCork (1.7) Picker
∗ (2.1) DTM (2)

fCork (3.22) fCork (3.4) Picker
∗ (2.8) Disp (3) fCork (3.1)

Disp (3.33) Disp (3.8) Disp (4.2) Baseline (4.3) Disp (4)
Baseline (5) Baseline (4.1) Baseline (4.7) DTM (4.6) Baseline (4)

Table 3. Number of features divided by joint entropy of the feature set

Data set Baseline Picker
∗

Disp fCork DTM

NCI 786 0 44.89±0.0579 13.68±0.0048 19.71±0.1086 8.74±0.3560 58.39±0.7455

NCI A549 ATCC 44.77±0.1198 13.92±0.0071 19.66±0.1658 9.56±0.3645 64.33±1.1459

NCI CAKI 1 44.98±0.1417 13.64±0.0071 19.79±0.0934 8.68±0.3641 61.49±1.1933

NCI CCRF CEM 45.08±0.1046 13.85±0.0041 20.18±0.0840 8.87±0.4358 59.75±1.1532

NCI COLO 205 44.84±0.114 14.05±0.0078 19.89±0.0798 8.89±0.1390 61.66±0.7693

NCI SF 539 45.11±0.0663 13.02±0.0047 20.17±0.1445 8.79±0.2561 60.07±0.9540

Blood Brain Barrier 60.20±0.1036 6.32±0.0088 6.80±0.4355 2.74±0.1302 8.05±0.4570

NCTRER 68.17±0.3723 5.63±0.0403 6.52±0.1542 3.34±0.1906 5.33±0.3608

Yoshida 64.013±0.0963 4.84±0.0065 6.44±0.2702 2.74±0.1100 6.96±0.5243

Cancer 34.84±0.0059 23.78±0.0033 15.52±0.8953 13.46±0.2409

in terms of equivalence classes and correspondences, coming second in terms of
equivalence classes only to Picker∗ that directly optimizes those. Apparently,
DTM’s approach to class-sensitive pattern generation and its ability to relate
feature set size to training set size lead to good overall performance. DTM’s bad
dispersion score actually supports this point: the unnormalized dispersion score
we report increases in the number of patterns involved. The fact that DTM

finishes last in terms of it shows that it generates more features than most com-
peting methods on the large datasets. This is also illustrated in Table 3. Joint
entropy can be considered as giving the number of bits that are needed to encode
the partition. Since each feature acts in fact as a bit in the encoding, the table
essentially gives the average number of patterns per bit of information. One can
see that DTM adapts better to the varying training set sizes than for instance
fCork or the Baseline. In fact, it adapts a bit too well and the drawback of its
large pattern set sizes can be seen in Table 7, which gives the runtimes. Here,
DTM performs worst by a large margin. For the cancer dataset, we had to cancel
the run after 100 hours.

In order to find a highly predictive, yet fast technique, it is therefore desirable
to keep the advantages of DTM – focus on supervised partition generation and
sensitivity to the size and characteristics of the underlying dataset – while doing
away with the drawbacks – the overly large number of features and long running
times.



Table 4. Running times per fold for different techniques (the techniques that are not
listed had negligible running times)

Data set fCork Disp DTM

NCI 786 0 4h40m±1h46m 1h2m±7m54s 4h46m±36m48s

NCI A549 ATCC 4h47m±1h53m 1h3m±6m39s 11h31m±4h0m

NCI CAKI 1 3h55m±1h7m 1h5m±6m28s 11h39m±3h17m

NCI CCRF CEM 4h24m±1h7m 1h1m±9m55s 12h46m±4h55m

NCI COLO 205 3h22m±1h34m 1h5m±7m33s 10h43m±3h33m

NCI SF 539 5h54m±4h16m 1h0m±5m11s 11h37m±4h44m

Blood Brain Barrier 20m12s±11m26s 6.14s±0.98s 7m 2s±1m5.65s

NCTRER 1h10m±38m 1.52s±0.18s 4m31.6s±1m3.75s

Yoshida 1m42s±1m4s 3.16s±0.42s 7m7.5s±1m23.65s

Cancer 10h41m±1h 13h8m±20m 100h+

5 The ReMine Algorithm

DTM, shown in Algorithm 1 iteratively mines patterns in the same way as a
binary decision tree is induced on class-labeled data: first, a single test that
scores best according to information gain is extracted (line 2). In a standard
decision tree, such a test would be an attribute-value pair, while in DTM a
graph-structured pattern is mined. The data is then split into two subsets, one
on which the test matches, the second on which it does not (line 4), and the op-
eration repeated on the derived subsets (line 5). A problem is that information
gain, in contrast to e.g. minimum frequency, is not anti-monotone. However,
it is possible to calculate an upper bound for information gain and use it for
forward-pruning to make mining for the best pattern according to information
gain (T h1(D,L, φ)) feasible [12]. Information gain rewards patterns that sepa-

Algorithm 1 The DTM algorithm

DTM(D)

1: F = ∅
2: Fnew = T h1(D,L, φ) – this yields zero or one feature
3: if Fnew 6= ∅ then

4: P = {B1, B2} = D/ ∼Fnew

5: F = Fnew ∪ DTM(B1) ∪ DTM(B2)
6: end if

7: return F

rate instances with different class labels from each other, in this way reducing
correspondences on the subset on which a pattern is mined. We aim at keeping
this basic mining process of DTM, still mining a single best pattern from a
subset. The difference lies in how we apply the patterns to derive new subsets
for the following iteration: Instead of using each pattern to split only the subset



on which it was mined, we use all patterns derived so far to induce a partition
on the entire data (line 3 in Algorithm 2).

This can be illustrated by considering the first three iterations: in the first
step, both DTM and ReMine mine the best pattern according to information
gain and use it to split the whole data set into two subsets. In the second
iteration, two more patterns are mined but when these are used to split the
subsets, DTM and ReMine behave differently. DTM splits each subset in two,
according to the pattern mined from each, for a maximum of four subsets.
ReMine, on the other hand, splits each subset according to both patterns. This
can lead maximally to four new subsets from each current one, for a total of
maximally eight subsets of the data. The maximum number of different blocks
that can be encoded by three binary features is eight, which shows that ReMine

can use patterns much more efficiently than DTM when it induces a partition.
In the third iteration, DTM will therefore mine for four new patterns, while
ReMine mines for eight.

Accordingly, the ReMine algorithm consists of a main loop (line 2-10) where
in each iteration the whole data set D is partitioned according to the current
set of features F (line 3). Then for each of the blocks Bi of the partition P the
feature giving the highest information gain is extracted (line 6) which are then
joined with the previous features (line 8). If the new partition P

′ induced by the
resulting enhanced feature set has not changed, the algorithm terminates and
returns the found set of features F .

Algorithm 2 The ReMine algorithm

1: F = ∅ – the initial set of features
2: repeat

3: P = D/ ∼F – partition induced by the current feature set
4: Fnew = ∅
5: for all blocks Bi ∈ P do

6: Fnew = Fnew ∪ T h1(Bi,L, φ)
7: end for

8: F = F ∪ Fnew

9: P
′ = D/ ∼F – partition induced by the new feature set

10: until P
′ = P

11: return F

6 Experimental Evaluation

Our goal in proposing the ReMine technique lies in keeping DTM’s good perfor-
mance in terms of AUC while at the same time reducing the number of patterns
mined which should help in achieving lower running times. We therefore repeat
our earlier experiments and compare ReMine’s results against those of fCork,
Picker∗, and DTM. As Table 5 shows, ReMine achieves on average second-



Table 5. Ranking of techniques for different criteria, including ReMine now

AUC # equivalence classes # correspondences dispersion score joint entropy

DTM (1.89) DTM (2.2) ReMine (1.7) fCork (1) DTM (2.2)
ReMine (2) Picker

∗ (2.4) fCork (2.4) Picker
∗ (2.2) Picker

∗ (2.6)
Picker

∗ (2.78) ReMine (2.6) DTM (2.5) Disp (3.3) ReMine (2.7)
fCork (4.11) fCork (4.4) Picker

∗ (3.6) ReMine (3.7) fCork (4)
Disp (4.22) Disp (4.6) Disp (5.2) Baseline (5.2) Disp (4.7)
Baseline (6) Baseline (4.8) Baseline (5.6) DTM (5.6) Baseline (4.8)

best AUC (by a small margin), and performs at least as good as DTM in terms
of the quantitative criteria, improving on it for the number of correspondences
and the dispersion score. This means that we achieved our goal to keep the good
performance and the ranking indicates improvements in the number of features
as well. Table 6 confirms this indication, showing that while ReMine does not

Table 6. Number of features divided by joint entropy of the feature set, including
ReMine now

Data set Picker
∗

fCork DTM ReMine

NCI 786 0 13.68±0.0048 8.74±0.3560 58.385±0.745544 18.79±1.0739

NCI A549 ATCC 13.92±0.0071 9.56±0.3645 64.33±1.14595 20.23±0.9974

NCI CAKI 1 13.64±0.0071 8.68±0.3641 61.49±1.19338 19.04±0.9252

NCI CCRF CEM 13.85±0.0041 8.87±0.4358 59.75±1.15327 19.28±0.6363

NCI COLO 205 14.05±0.0078 8.89±0.1390 61.66±0.76938 19.85±0.7491

NCI SF 539 13.02±0.0047 8.79±0.2561 60.07±0.95406 19.68±1.059

Blood Brain Barrier 6.32±0.0088 2.74±0.1302 8.05±0.4570 5.36±0.4502

NCTRER 5.63±0.0403 3.34±0.1906 5.33±0.3608 4.77±0.2409

Yoshida 4.84±0.0065 2.74±0.1100 6.96±0.5243 4.95±0.2858

Cancer 23.78±0.0033 13.46±0.2409 71.55±2.5414

mine as few patterns as Picker∗ and fCork, it strongly reduces the size of the
feature set compared to DTM. The final aspect to be evaluated is that of running
times and as Table 4 shows, along with the reduction in features mined comes a
reduction in running times that is so pronounced that ReMine runs even faster
than fCork while mining more features (and leading to better AUC).

7 Conclusions and Future Work

In this paper we evaluated the importance (in terms of AUC) of several selection
criteria for pattern set mining. We found that minimizing correspondences is
necessary, but not sufficient for predictive classifiers, whereas general partitioning
scores are good overall indicators of pattern set quality. We also found that
successful methods need to adapt the pattern set size to the characteristics of the
datasets. Unfortunately, large pattern sets require many expensive mining steps



Table 7. Running times per fold for different techniques (the techniques that are not
listed had negligible running times)

Data set fCork DTM ReMine

NCI 786 0 4h40m±1h46m 4h46m±36m48s 59m27s±13m56s

NCI A549 ATCC 4h47m±1h53m 11h31m±4h0m 59m27s±13m56s

NCI CAKI 1 3h55m±1h7m 11h39m±3h17m 2h36m±1h57m

NCI CCRF CEM 4h24m±1h7m 12h46m±4h55m 2h20m±1h51m

NCI COLO 205 3h22m±1h34m 10h43m±3h33m 2h47m±2h17m

NCI SF 539 5h54m±4h16m 11h37m±4h44m 2h59m±1h54m

Blood Brain Barrier 20m12s±11m26s 7m 2s±1m5.65s 2m16.4s±24.2s

NCTRER 1h10m±38m 4m31.6s±1m3.75s 1m48.5s±15.9s

Yoshida 1m42s±1m4s 7m7.5s±1m23.65s 1m53.9s±11.9s

Cancer 10h41m±1h 100h+ 13h51m±2h14m

and large runtimes.We thus designed a faster and more efficient adaptation of
the DTM algorithm. ReMine performs the local pattern mining step in the same
way as DTM, but uses all patterns instead of a single pattern per iteration on the
entire data to induce the new partition. Our experimental evaluation showed that
ReMine retains the good performance of DTM in terms of AUC, has similar
characteristics in the number of equivalence classes and correspondences, reduces
the number of patterns mined, and has lower runtimes.

The aforementioned partial redundancy among patterns mined by ReMine

could actually go as far as producing completely redundant, e.g. complementary,
patterns. Whether removing such redundant patterns or other redundancy con-
trol methods would improve or impair the usefulness of the derived encoding is
an open question. There is also the issue that decision-tree like iterative miners
like ReMine (or MbT and Tree2) can be parallelized, giving them a further
speed advantage over sequential miners like fCork. Finally, we were only con-
cerned with graph-structured data in this work, other representations, including
unstructured data such as itemsets, remain a topic for future work.
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