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79110 Freiburg, Germany
{azimmerm, deraedt}@informatik.uni-freiburg.de

Abstract. We introduce the problem of cluster-grouping and show
that it integrates several important data mining tasks, i.e. subgroup
discovery, mining correlated patterns and aspects from clustering. The
problem of cluster-grouping can be regarded as a new type of inductive
optimization query that asks for the k best patterns according to a con-
vex criterion. The algorithm CG for solving cluster-grouping problems is
presented and the underlying mechanisms are discussed. The approach
is experimentally evaluated on a number of real-life data sets. The re-
sults indicate that the algorithm improves upon the subgroup discovery
algorithm CN2-WRAcc and is competitive with the clustering algorithm
CobWeb.
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1 Introduction

Many problems and settings are described in the machine learning and data
mining literature. The techniques that will be addressed in this paper include:
subgroup discovery [1,2], clustering [3,4], and correlated pattern mining [5].

In subgroup discovery, the goal is to find groups (often in the form of conjunc-
tive rules c1∧ ...∧cn � a) that are statistically over- or under-represented w.r.t.
a particular target attribute a and thus, since they show unexpected behaviour,
are considered interesting. For instance, the group smoker is an interesting sub-
group w.r.t. cancer, as smokers have a higher probability of having cancer. Cor-
related pattern mining [5,6] can be viewed as an extension of subgroup discovery
where one is looking for interesting rules (w.r.t. statistical criteria such as χ2)
but with no fixed target attribute. Subgroup discovery is thus closely related to
rule learning, while correlated pattern mining is more similar to association rule
discovery. In clustering [3,4], the goal is to compute interesting groups, and in
conceptual clustering, it is furthermore desired to obtain symbolic descriptions
of the clusters.
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Although these three techniques are in the literature perceived as being quite
different, it turns out that they share a number of characteristics. The key con-
tribution of this paper is the introduction of the cluster-grouping problem that
subsumes subgroup discovery [1,2], clustering [3], and correlated pattern mining
[5]. Cluster-grouping is concerned with finding rules b1∧...∧bk � h1∨...∨hn that
score best w.r.t. an interestingness function σ and a data set E . Cluster grouping
rules state that for examples covered by the condition part b1 ∧ ...∧ bn it is pos-
sible to reliably predict the attributes hi in the conclusion part. To address the
cluster-grouping problem, we develop the branch-and-bound algorithm CG that
utilizes the convexity of different evaluation functions. It significantly extends the
correlated pattern mining framework by Morishita et al. [5], in that it general-
izes Morishita et al.’s approach to an arbitrary dimension. CG is experimentally
validated against the heuristic CN2-WRAcc algorithm [1] for subgroup discov-
ery and the CobWeb algorithm [3] for conceptual clustering. The experiments
show that CG typically finds better (even optimal) subgroups while exploring
less candidates than CN2-WRAcc, and that CG finds cluster definitions in the
form of conjunctions, which are competitive in terms of Category Utility [7] with
the clusters found by CobWeb.

The cluster grouping problem can be viewed as a novel type of inductive query
[8,9], in which one is interested in the k best rules with regard to the interest-
ingness function σ. This type of query thus looks for the k optimal rules, which
explains why we employ a branch-and-bound algorithm. This is an inductive
optimization query which differs from the typical type of constraints used, in
which one can decide whether a pattern satisfies the constraint independently of
the other patterns in the space. Still, cluster-grouping queries are both declara-
tive and powerful as they can be used to find optimal solutions for a wide range
of mining tasks, i.e. subgroup discovery, correlated pattern mining as well as
clustering.

We proceed as follows. In the next section we introduce the necessary nota-
tions used throughout the paper, and define the problem. In section 3, we explain
how cluster-grouping unifies the data mining tasks mentioned. In the fourth sec-
tion, we discuss the upper bound computation which is necessary for efficiently
solving the problem and in section 5 present the algorithm developed. We evalu-
ate our approach in section 6 and finally, we touch upon related work, formulate
our conclusions and discuss future research directions in sections 7 and 8.

2 Preliminaries

We consider the problem of cluster-grouping as one of learning interesting, i.e.
strongly correlating, rules on a given data set.

2.1 Rules

Let A = {A1, ..., Ad} be a set of ordered attributes and V [A] = {V1, ..., Vp} the
domain of A. An instance e is then a tuple 〈v1, ..., vd〉 with vi ∈ V [Ai]. A multiset
E = {e1, ..., en} is called a data set.
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Definition 1 (Literal). A literal l is an attribute-value-pair A = v with v ∈
V [A]. An instance 〈v1, ..., vd〉 is covered by a literal l of the form Ai = v iff
vi = v.

Definition 2 (Rule). A rule r is of the form b ⇒ h with b = l1 ∧ ... ∧ li the
rule body, and h = l′1∨ ...∨ l′d the rule head. An instance e is covered by b iff it
is covered by all its literals and it is covered by the entire rule r iff it is covered
by at least one literal in h as well.

2.2 Interestingness Measures

As mentioned above we consider interesting rules to be rules that have a strong
correlation between their body and their head. It is necessary to define the notion
of support, when working with correlation measures:

Table 1. Contingency table for b ⇒ h1

h1 ¬h1

b sup(b ⇒ h1) = y1 sup(b ⇒ ¬h1) = x − y1 sup(b) = x
¬b sup(¬b ⇒ h) = m1 − y1 sup(¬b ⇒ ¬h1) = n − m1 − (x − y1) sup(¬b) = n − x

sup(h1) = m1 sup(¬h1) = n − m1 n

Definition 3 (Support). For a literal l, we define

sup(l) = |{e | e is covered by l}|

the support of l. Similarly, the support of a rule body b is defined as

sup(b) = |{e | e is covered by b}|

and of a rule with a single consequent

sup(b ⇒ h) = |{e | e is covered by b ∧ e is covered by h}|

For the remainder of this paper, we will use the following notation to refer to
occurrence counts of rules:

Definition 4 (Occurrence Counts). For a given rule b ⇒ h1 ∨ ...∨ hd and a
given data set E we define:

n = |E|, mi = sup(hi), x = sup(b), yi = sup(b ⇒ hi)

To facilitate the use of correlation measures, occurrence counts are often or-
ganized in contingency tables. A contingency table for a rule body having two
values (i.e. true and false) and a single binary-valued target literal is shown in
Table 1. Note that the sum of the cells in a row (column) is equal to the margins
of the table, i.e. the rightmost (down-most) entry in a row (column). Correla-
tionmeasures compare for a given cell the product of the corresponding margins
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to the cell count, thus comparing expected to observed frequency, and score the
difference. Comparing the expected and observed frequency for the upper left
cell would e.g. in the χ2-measure take the form (y1−m1x/n)2

m1x/n .

Example 1. Consider as an example a database consisting of 50 instances (n),
for half of which “heavy” is true (m1). Assume furthermore that “strong eater”
occurs with support 10 (x ) in the database. If eight of the ten instances for which
“strong eater” is true also have “heavy”=true (y1), then the χ2 measure would
give the deviation of expected from observed frequency for the upper left cell a
score of 1.8.

Table 2. Pseudo-Contingency table for b ⇒ h1 ∨ h2

h1 ¬h1 h2 ¬h2
b sup(b ⇒ h1) sup(b ⇒ ¬h1) sup(b ⇒ h2) sup(b ⇒ ¬h2) sup(b) = x
¬b sup(¬b ⇒ h1) sup(¬b ⇒ ¬h1) sup(¬b ⇒ h2) sup(¬b ⇒ ¬h2) sup(¬b) = n − x

sup(h1) = m1 sup(¬h1) = n − m1 sup(h2) = m2 sup(¬h2) = n − m2 n

Normally, increasing the number of involved literals leads to an increase of
dimension of the contingency table to capture all dependencies among the lit-
erals. Since we are not interested in the dependencies between the hi, we use
tables such as the one in Table 2. We call this kind of table a pseudo-contingency
table. The main difference w.r.t. a regular high-dimensional contingency table,
a so-called multi-way table, is that the margin of a row is not equal to the
sum of row-cells anymore. Calculation of a correlation measure still consists of
comparing the product of the margins to the cell count.

Definition 5 (Stamp Point). For a given data set E every rule r of the form
b ⇒ h1∨ ...∨hd induces a tuple 〈x, y1, ..., yd〉 of variables introduced in definition
4. This tuple is called the stamp point of r, denoted sp(r), cf. [5].

Consider now an interestingness measure such as χ2, Category Utility, Infor-
mation Gain, or Weighted Relative Accuracy defined on a pseudo-contingency
table. Since n and the m i are constant for a given data set, a given interesting-
ness measure σ(r) can be defined as a function of d + 1 variables

σ : N
d+1 �→ R,

mapping the stamp point sp(r) to a real number.

Example 2. This means that sp(“strong eater”⇒“heavy”)=〈10, 8〉, a devia-
tion that is quantified by χ2(〈10, 8〉) = 4.5. Lets also consider “sportive” as
interesting. Under the assumption that among all instances that are matched by
“strong eater”=true, three also have “sportive”=true, we arrive at the stamp
point sp(“strong eater”⇒“heavy”∨“sportive”) = 〈10, 8, 3〉, and if furthermore
“sportive”’s frequency on the entire dataset is 30, χ2(〈10, 8, 3〉) = 10.397.
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Now we are able to define the cluster-grouping problem:

Definition 6 (Cluster-Grouping Problem).
Given:

– A set of literals L
– A data set E
– An interestingness measure σ
– A set of target literals T

Find:
The set of k rules expressible in L having the highest value of σ on E w.r.t. the
given target literals T .

3 Unifying Several Data Mining Tasks

Let us now formulate the three data mining tasks mentioned before, i.e. cor-
related pattern mining, subgroup discovery and conceptual clustering, in the
framework introduced above.

3.1 Correlated Pattern Mining

The correlated pattern mining task was introduced by Morishita and Sese [5]
in the context of itemset mining. Their main motivation lies in the fact that
association rules with very high confidence might still carry no information.
Therefore, using a correlation measure to evaluate the quality of rules found will
result in more interesting relationships. The task of correlated pattern mining can
be formulated as a cluster-grouping problem with the following characteristics:

Let I = {I1, ..., Iz}, ∀I ∈ I : V [I] = {false, true} the set of items,

– L = {I = true | I ∈ I}
– E a transaction data base
– σ is a correlation measure such as χ2

– T a single literal l ∈ L

While Morishita and Sese restrict their approach to the classical itemset set-
ting, the use of a correlation measure would also allow the mining of negative re-
lationships, i.e. the expansion of L to include literals of the form i = false, i ∈ I,
would allow one to find relationships in which the absence of an item correlates
with the presence of another.

3.2 Subgroup Discovery

Lavrač et al. [1] argue convincingly that a rule learning algorithm such as CN2
[10], used together with a metric measuring positive correlation such as Weighted
Relative Accuracy (WRAcc) [11], can be employed to find subgroups, i.e., subsets
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of a data set that show unexpected behaviour with regard to a specific target at-
tribute. The subgroup discovery problem can be formulated as a cluster-grouping
problem in the following way:

Let At ∈ A be the target attribute we are interested in.

– L = {A = v | A ∈ A \ {At}, v ∈ V [A]}
– E a data set
– σ is WRAcc
– T = {At = v | v ∈ V [At]}

Lavrač et al. employ beam search to find subgroups. Depending on the beam
size, this approach may lead to suboptimal rules being found. Additionally, if
there are several best subgroups the wrong beam size might cause the exclusion
of some of them.

3.3 Conceptual Clustering

The goal in conceptual clustering is to group instances in a data set into groups
that exhibit high intra-cluster similarity and high inter-cluster dissimilarity. In-
stances are considered similar if they agree on the values of many attributes.
One measure for judging the quality of a set of clusters is Category Utility. The
task of conceptual clustering - with binary attributes only - can be formulated
as a cluster-grouping task with the following characteristics:

Let A = {A1, ..., Ad}, ∀A ∈ A : V [A] = {false, true} be a set of attributes:

– L = {A = v | A ∈ A, v ∈ V [A]}
– E a data set
– σ is Category Utility
– T all literals of the form A = true, A ∈ A

The well-known clustering algorithm CobWeb [3] aims at finding clusters with
high Category Utility. The drawbacks of CobWeb lie in the fact that it processes
instances iteratively, possibly leading to a sub-optimal solution, and that the
direct assignment of instances to clusters might lead to clusters that cannot be
described using a conjunction of literals. Instead, CobWeb characterizes clusters
by conditional probabilities on attribute-value pairs. For high-dimensional data
this representation is probably not very human-readable; additionally, it makes
assignments of future instances to clusters somewhat more difficult.

3.4 Contribution

The key contribution of this paper is 1) the introduction of the cluster-grouping
problem that makes abstraction of these three problem settings and 2) the for-
mulation of an algorithm that allows one to tackle the cluster-grouping problem.
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The algorithm will always output the solution or solutions achieving the high-
est value of σ. Usually, this can only be guaranteed by considering all possible
rules which is often computationally not feasible. This problem is solved using
pruning techniques that are derived from the observation that many correlation
measures (such as the ones mentioned above) are in fact convex functions.

4 Upper Bound on Convex Correlation Measures

While the cluster-grouping task can be tackled using a heuristic algorithm, such
an approach would not be guaranteed to find the optimal rules while an exhaus-
tive technique is not feasible for higher-dimensional data (and therefore a large
set of literals). Based on the convexity of correlation measures it is however pos-
sible to calculate an upper bound on the future value of σ for specializations of
a given rule. This upper bound is used to prune away parts of the search space
known not to produce interesting solutions and focus the search on promising
parts of the search space.

4.1 Convexity

Convexity is formally defined as follows.

Definition 7 (Convexity). A function f : D �→ R is convex iff D is a convex
set and ∀x1, x2 ∈ D, λ ∈ [0, 1] : f(λx1 + (1 − λ)x2) ≥ λf(x1) + (1 − λ)f(x2).

It can be proven that χ2, WRAcc, and Category Utility as well as other
correlation measures fulfill the second criterion.

For the definition to hold it is also necessary for the domain of the function
to form a convex set. A set S ⊂ N

n is convex if there are no points a and b in
S such that there is a point on the line between a and b that does not belong
to S. We will argue below following paragraph why this holds for the domain of
the correlation functions mentioned above.

Let r denote a rule of the form b ⇒ h1 ∨ ... ∨ hd, b′ a specialization, that
is an extension with at least one literal, of b, r′ of the form b′ ⇒ h1 ∨ ... ∨ hd,
and sp(r), sp(r′) the corresponding stamp points. Define Sact = {sp(r′)} as the
set of actual stamp points of all rules r′ whose rule body is a specialization
of b. This set is unknown until all specializations of b have been created and
evaluated on the data set. However, instead of computing Sact, one can try to
approximate it by the set of possible stamp points Sposs ⊇ Sact. The approxi-
mation is possible because the stamp point sp(r) = 〈x, y1, ..., yd〉 constrains all
sp(r′)poss = 〈x′, y′

1, ..., y
′
d〉 ∈ Sposs in the following way:

1. x ≥ x′ ≥ 0
2. ∀i : x ≥ yi ≥ 0
3. ∀i : yi ≥ y′

i ≥ 0
4. ∀i : x′ − y′

i ≥ x − yi
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Each of these inequalities defines one or more convex sets in d+1-dimensional
space. Since Sposs is the intersection of all these sets it is a convex set itself. Sposs

is the domain of σ given b. Convex functions take their extreme values at the
points forming the convex hull of their domain D [12]. So by evaluating σ on the
points forming the convex hull of Sposs, it is possible to obtain an upper bound
for the value that σ can take on any point sp(r′) ∈ Sposs. Since Sact is a subset
of Sposs, this upper bound is also an upper bound on the value of σ on any point
of Sact.

y

x0,0 x−y,0

y,y x,y

Fig. 1. Actual stamp points sp(r′) and convex hull of Sposs for 〈x, y〉(taken from [5])

For the two-dimensional case, the convex hull of Sposs is the parallelogram
defined by the vertices 〈x, y〉, 〈y, y〉, 〈x−y, 0〉, 〈0, 0〉 as shown in Figure 1. These
vertices are derived by computing the four points 〈xmax, ymax〉, 〈xmin, ymax〉,
〈xmax, ymin〉, 〈xmin, ymin〉, while taking into account the four inequalities above.

Example 3. Continuing our example, if the body of the rule is extended, e.g.
with “strong smoker”, at most 10 instances are covered by the new rule body.
Among those, maximally 8 will have “heavy”=True. Should “strong smoker”
and “heavy” correlate negatively, the presence of “strong smoker” would reduce
the number of instances in which “heavy” was present, which also means that
the total number of instances covered is reduced. Any future stamp point will
therefore be inside the parallelogram defined by 〈0, 0〉, 〈8, 8〉, 〈2, 0〉, 〈10, 8〉.

For computing the upper bound on σ, the points 〈x, y〉 and 〈0, 0〉 do not
have to be considered. The first point describes a specialization with the same
coverage as the current rule. Since such a specialization is expected to generalize
less well to as yet unseen examples, we give preference to the rule already found.
The second denotes a rule that does not cover any examples, which renders it
useless. Therefore, ubσ(b) = max{σ(y, y), σ(x − y, 0)}.

Example 4. Continuing our example from above, this means that for σ being
χ2, ubχ2(r) = max{9.52, 2.08}, given x = 10, y1 = 8. Since 9.52 is larger than
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χ2(x, y1) = 4.5 there might be a specialization of T that discriminates better than
r itself and therefore exploring this search path is worthwhile.

4.2 Extension to Higher Dimensions

The approach described above was introduced by Morishita and Sese [5]. Their
work is however restricted to a single binary target literal. To calculate an upper
bound for the type of rules given in Definition 2, an extension to higher dimen-
sions is necessary. Even though this extension is not too difficult, two problems
arise:

Firstly, the number of convex hull points grows exponentially with the dimen-
sionality of the data since all combinations of minimum and maximum values
for x and the yi have to be considered, meaning that |{min, max}|d = 2d points
would have to be evaluated. Secondly, it is insufficient to simply consider yi as
maximum value of y′

i and 0 as minimum. Instead, the dependencies between
different yi have to be considered.

Both of these problems can be somewhat lessened by enumerating the convex
hull points in a different manner. This approach was first applied by Morishita
and Sese [13] to the problem of clustering numerical values into clusters describ-
able by binary attributes. To make the enumeration technique more understand-
able, consider Category Utility as an example. Category Utility for two clusters
is defined as:

CU(C1, C2) =
1
2

∑

C∈{C1,C2}
P (C)

∑

A∈A

∑

v∈V[A]

P (A = v | C)2 − P (A = v)2

Now consider the case that membership in the first of the two clusters is based
on whether an instance is covered by a rule body br (for a given set of binary
target attributes At). If the instance is not covered by br, it is assigned to the
second cluster. In that case, Category Utility can be re-written as:

CU(br,At) =
1

2

�
� �

b∈{br,¬br}
P (b)

�
A∈At

�
v∈{true, false}

P (b ⇒ A = v)2

P (b)2
− P (A = v)2

�
�

This formula can be simplified by pushing the 1
2P (b) into the sum:

CU(br,At) =
�

A∈At

�
v∈{true, false}

�
b∈{br,¬br}

�
1

2
P (b)

�
P (b ⇒ A = v)2

P (b)2
− P (A = v)2

��
,

so that the total Category Utility can be expressed as the sum of several partial
Category Utilities :

CU(br,At) =
∑

A∈At

CU(br, {A})
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Note that while Category Utility is used in this example the same property
holds for correlation measures such as χ2, WRAcc, Information Gain and oth-
ers if the relations between the target attributes are ignored as in the cluster-
grouping setting.

The set At corresponds to the tuple 〈y1, . . . , yd〉, with every single Ai ∈ At cor-
responding to a yi. Formulated in the stamp point notation, the above equation
thus becomes:

CU(x, y1, ..., yd) =
d∑

i=1

CU(x, yi),

and the maximization of CU the maximization of the sum of the partial Category
Utilities :

max
〈x′,y′

1,...,y′
d〉

CU(x′, y′
1, . . . , y

′
d) = max

〈x′,y′
1,...,y′

d〉

d∑

i=1

CU(x′, y′
i).

This alone does not make the maximization process easier since all 2d points
on the convex hull would still have to be evaluated. The number of computations
would decrease if the maximization could happen for each term of the sum
independently of the others. If this would be done for arbitrary x′, the maximal
values for different terms could induce conflicting values for x′, resulting in an
inconsistent stamp point. But for fixed x′ each of the d terms can be maximized
separately and if x′ takes all values in [0, x], we are not losing any solutions:

max
〈x′,y′

1,...,y′
d〉

d∑

i=1

CU(x′, y′
i) = max

0≤x′≤x

{
d∑

i=1

max
y′

i

CU(x′, y′
i)

}

For each of the y′ this maximum is independent of the other y′
i. The minimum

and maximum values yi
min, yi

max are determined by the values x′ and yi. Thus,
maximizing the partial Category Utility turns into calculating it for the minimum
and maximum value and keeping the larger one:

max
0≤x′≤x

{
d∑

i=1

max
y′

i

CU(x′, y′
i)

}
= max

0≤x′≤x

{
d∑

i=1

max
y′

i∈{yi
min,yi

max}
CU(x′, y′

i)

}

Therefore for a given x′, 2d calculations have to be performed. Since x′ = 0
and x′ = x can be ignored, following the argument in the last paragraph of
section 4.1, a total of 2d(x − 2) calculations have to be performed to compute
the upper bound on the values of σ for a given br.

5 The CG-Algorithm

In this section we present the algorithm CG for cluster-grouping. We also explain
the upper bound calculation in more depth.
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CG
E - data set
σ - correlation measure

P := {�}, τ := −∞, S := ∅
while P �= ∅

bmp := arg maxub(b){b ∈ P}
C := ρ(bmp)
∀ci ∈ C

compute sp(ci), calculate σ(ci)
ubσ(ci) :=UpperBound(sp(ci))
τ := max{τ, σ(ci)}

S := {s ∈ S | σ(s) = τ} ∪ {c ∈ C | σ(c) = τ}
P := {p ∈ P | ubσ(p) ≥ τ} ∪ {c ∈ C | ubσ(c) ≥ τ}

return S

Fig. 2. The CG algorithm

The cluster-grouping algorithm CG (listed in Figure 2) is essentially a branch-
and-bound algorithm. Starting from the most general rule body (denoted by
), in each iteration the rule body bmp ∈ P with the highest upper bound is
specialized. We use an optimal refinement operator ρ:

Definition 8 (Optimal Refinement Operator). Let L be a set of literals, ≺
a total order on L, τ ∈ R.

ρ(b) = {b ∧ li | li ∈ L, ubσ(li) ≥ τ, ∀l ∈ r : l ≺ li}

is an optimal refinement operator.

The operator ensures that each rule body will be created and evaluated at
most once during a run of the algorithm. Since only literals are added whose
upper bound exceeds the threshold, the resulting specializations have a chance
of exceeding or matching the current threshold. The created specializations are
then evaluated on the data set and the σ-scores and upper bounds are calculated.
All specializations whose upper bound is not above the threshold τ are pruned.
If possible, the threshold is raised. For the case shown in the Figure 2, the best
score seen so far is used as threshold, but the algorithm can be trivially modified
so that k best rules are found. Specializations whose score matches the current
threshold are added to the set of solutions S. The set of promising rule bodies P
is pruned using the threshold and all specializations whose upper bound exceeds
τ are added.

5.1 Upper Bound Computation

As the upper bound is so essential for the mining process, we explain the algo-
rithm for computing it in greater detail.
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UpperBound
σ - correlation measure
〈x, y1, ..., yd〉 - stamp point

x′ = 1
ubσ = 0
while x′ ≤ x − 1
∀i ∈ {1, ..., d}

yi
max = min{x′, yi}, yi

min = max{0, yi − (x − x′)}
addi = max{σ(x′, yi

max), σ(x′, yi
min)}

ubσ = max{ubσ,
�d

i=1 addi}
x′ + +

return ubσ

Fig. 3. Algorithm for calculating the upper bound on σ

It works as follows. The loop runs from 1 through x − 1 (since x′ = 0 and
x′ = x do not have to be considered). For each possible x′ value the correspond-
ing maximum and minimum values yi

max, yi
min of a variable y′

i, given yi and
x′, are calculated. Maximizing the correlation measure for fixed x′ amounts to
maximizing the terms σ(x′, y′

i). This is achieved by evaluating the measure for
each maximum and minimum value yi

max, yi
min and choosing the larger value of

those two to be added to the σ value for the current x′. The largest of these
x − 2 correlation values is taken as the upper bound on σ.

To calculate the maximum value of σ for a given x′, it is necessary to derive
the minimum and maximum value for each y′

i while considering the inequalities
in section 4.1. The details of deriving those extreme values are described in the
following paragraphs.

Minimum-Maximum-Derivation. From inequality 2 it follows that y′
i cannot

be greater than x′ and inequality 3 states that y′
i ≤ yi. Therefore yi

max can be
calculated as yi

max = min {x′, yi}.
Since the yi are occurrence counts in a data set, they cannot become nega-

tive. Inequality 4 finally has to be understood in the following way: since every
instance that is counted for a yi is also counted for x, a decrease in yi has to be
accompanied by a decrease in x. This means that yi

min cannot always be set to
zero. If the difference between x′ and x is less than yi, yi must not be decreased
by more than that difference. Therefore yi

min = max {0, yi − (x − x′)}.

Example 5. Lets consider two values for x′ during the loop. For x′ = 9,
y′
1 ≤ min{8, 9}, and since only one instance less would be covered, even if

“heavy”=True held for this instance, the occurrence of “heavy” cannot sink
below 7. Thus 7 ≤ y′

1 ≤ 8. By similar reasoning one arrives at 2 ≤ y′
2 ≤ 3.

For x′ = 4 the situation is somewhat different. Since x was reduced by 6 and
each of the instances not covered anymore might have included “heavy”=True
and “sportive”=True, the minimum values for y′

1 and y′
2 are max{0, 8− 6 = 2}
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and max{0, 3 − 6 = −3} respectively. Similarly, their value is bounded by the
respective values of the yi and x′ = 4. This leads to 2 ≤ y′

1 ≤ 4 and 0 ≤ y′
2 ≤ 3.

6 Experimental Evaluation

Let us now investigate the applicability and performance of the CG algorithm
on the three tasks addressed in this paper: correlated pattern mining, subgroup
discovery and conceptual clustering.

The data sets employed in the experiments were selected from the UCI Ma-
chine Learning Repository [14]. Since the approach is limited to data sets de-
scribed by binary attributes, continuous attributes were discretized and nominal
attributes binarized. Two options for discretization were employed. In the näıve
version, the mean value of an attribute is computed and taken as a threshold.
For some data sets this leads to unbalanced attributes. For these sets, we also
split the attribute values into two equal frequency bins. They are denoted with
a trailing “-equal” in the name

6.1 Correlated Pattern Mining

Since the rules mined by Morishita and Sese are special cases of clustering group-
ing rules and the pruning technique is based on the same principles, it follows
that the CG algorithm is applicable to correlated pattern mining and also that
it will produce the same solution as Morishita and Sese’s approach. We therefore
repeat no experiments on this task.

6.2 Subgroup Discovery

To evaluate CG on subgroup discovery, we compare it with CN2-WRAcc [1] in
two settings. The first setting corresponds to the inner loop of the CN2-WRAcc
algorithm that employs beam search to find the best rule; the second one to the
full CN2-WRAcc implementation that incorporates the covering algorithm.

CN2-WRAcc Beam Search. As argued before, this setting corresponds to
cluster-grouping. Whereas CG guarantees to find the optimal rules, the CN2-
WRAcc beam search is heuristic and offers no guarantees of optimality. There-
fore, in a first set of experiments concerning subgroup discovery, we investigate
(1) to what extent CN2-WRAcc beam search finds optimal rules and also (2)
how the CG algorithm compares with beam search in terms of efficiency. As the
criterion for the optimality (1), we computed all optimal rules using CG, and
verified whether CN2-WRAcc finds any optimal rule (OF in the tables) and all
rules with optimal values (AF ). With regard to (2), we compared the number of
candidate rules that were evaluated by the two algorithms. Because the perfor-
mance of beam search depends heavily on the beam-size, we experimented with
different beam sizes.
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Table 3. Number of Candidate Rules evaluated and Optimality of Subgroups found
by Beam Search

Data Set BS1Avg BS5Avg BS10Avg CGMin CGMax CGAvg AF OF
Car 85 278 483 21 102 45 Yes Yes
Zoo 2133 9173 17630 147 5775 1525 No∗ Yes
Nursery 141 498 970 27 274 85 Yes Yes
Breast-W 529 1882 3539 91 99 95 Yes Yes
Voting Record 301 1139 2162 33 36 35 Yes Yes
Mushroom 1806 7674 15006 172 219 196 No∗∗ No∗∗

Soybean 2036 9076 17712 1943557 2097405 2007660 No∗ No∗

(13116+) (468869+) (284680+)

∗Not for all classes, for some not for all beam sizes
∗∗Not for all beam sizes
+Break value f = 5

The first column of Table 3, BS1Avg, denotes the number of candidate pat-
terns evaluated during a search with beam size 1 by CN2, BS5Avg and BS10Avg

for beam size 5 and 10 accordingly. The columns CGMin and CGMax denote
the minimum and maximum number of candidates generated by CG. For CG
those numbers vary with the class considered, whereas for CN2 these numbers
are quite close to one another for the different classes. This also explains why
for CN2 we report on the average values. In addition, the average number of
candidates CGAvg is reported to show the general behavior of the algorithm.

In most cases there is a substantial reduction in the number of candidate rules
considered during the search process even when the CG-algorithm is compared
to the greedy (i.e. beam size 1) approach. The difference is even more pronounced
for wider beams. For those cases where more candidate rules are considered by
CG, the beam search algorithm often either fails to uncover all interesting rules
or finds suboptimal ones. This also happens in cases in which the beam size
approach evaluates more rules than CG.

The experiments also show that increasing the beam size does not necessarily
lead to better results. For the first class considered in the soybean data set, beam
sizes 10 and 15 induce incomplete rule sets while beam sizes 4 and 5 generate
the correct results, showing the difficulty of guessing the right beam size. The
most likely explanation for this effect is probably that locally good solutions
are kept, that are excluded by narrower beams. If those solutions have a large
number of refinements they replace promising rules that would have been kept
for specialization in runs with smaller beam sizes. It might be interesting to
further investigate this phenomenon. The circumstances under which not (all)
optimal rules are found are denoted by the asterisks.

In some cases the CG algorithm investigates an excessive amount of candidate
rules. The effect occurs especially for rather small values of σ and is due to the
upper bound being overly optimistic. We therefore built a variant that is no
longer guaranteed to find the optimal rules: whenever the pruning threshold
is raised the number of candidate rules considered so far is memorized. Once
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f times that number of candidates has been visited without improvement of
the pruning threshold the search is terminated. The cutoff value f has to be
determined by the user. This version of the algorithm behaves like a local search
approach, assuming that failure to find a higher value in the (rather extensive)
neighborhood of the currently best solution means that a global maximum has
been found. This variant is computationally less expensive than CG, while it still
finds all optimal rules on the studied data sets even for small value of f (f = 5).

CN2-WRAcc Sequential Covering. In the second experiment, we employ
the sequential covering algorithm as a wrapper around CG and the CN2-WRAcc
beam search procedure. This corresponds to the original setting addressed by
CN2-WRAcc. The results are shown below (Table 4).

To consider the most favourable efficiency results for CN2-WRAcc, we report
only the minimum and maximum number of candidate rules considered using
beam-size 1. Wider beams will generate more candidate patterns. Averaging
these numbers is not really sensible since the impact of the number of iterations
per class is obviously strong. These results are contrasted with those for CG.
The last two columns convey the same information as in Table 3. To allow for a
fair comparison we considered larger beam sizes for CN2-WRAcc when deciding
whether the algorithm was capable of finding (all) optimal rules. The results
for sequential covering are in line with and confirm those for the underlying
components.

Table 4. Number of Candidate Rule evaluated and Optimality of Subgroups found by
the Sequential Covering Approach

Data Set BS1Min BS1Max CGMin CGMax CGAvg AF OF
Car 76 651 21 203 101 Yes Yes
Zoo 2109 2153 147 5775 1525 No∗ Yes
Nursery 129 292 27 274 95 Yes Yes
Breast-W 3703 6349 739 1382 1061 Yes Yes
Voting Record 903 903 2235 34659 18447 Yes Yes

(4480+) (3358+)
Mushroom 3558 8376 805 5638 3222 No∗∗ No∗∗

∗Not for all classes, for some not for all beam sizes
∗∗Not for all beam sizes
+Break value f = 5

6.3 Clustering

In the third experiment, we evaluate the performance of a hierarchical clustering
algorithm based on CG with Category Utility. CG is used to find the best rule
w.r.t. to Category Utility on the original data set. The rule found is used to split
the data set into two subsets. CG is then called recursively on these subsets.
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The algorithm continues until the best Category Utility on a subset falls below
a user-specified criterion. In this way, a kind of decision tree is induced that
can be used to assign future instances to the clusters. We compare our clus-
tering approach to the well-known clustering algorithm CobWeb. We employed
the Weka [15] implementation of CobWeb in our experiments. For each data set
with c classes, the two clustering algorithms were run until they constructed c
clusters. This was enforced by setting the minimal threshold for further refining
clusters to an adequate value.1 This was done to provide a fair basis for com-
parison. Furthermore, because CobWeb is incremental and sensitive to the order
in which the examples are presented, the CobWeb results were averaged over 10
randomized orders.

The results are shown in Table 5. The evaluation criteria employed to compare
the performance of both algorithms are:

– Rand Index [16] for comparing the agreement of the clusterings found,
– Category Utility of the discovered solutions.

The Rand index is the fraction of pairwise grouping decisions on which the
two clusterings agree. Let E = {e1, ..., en} be a data set and C1, C2 two clusterings
of E . For each pair of instances ei, ej, Cl either assigns them to the same cluster
or to different clusters. Let pos be the number of decision where ei, ej are in
the same cluster in both clusterings and neg the number of decisions where they
belong to different clusters in both Cl. The Rand Index is defined as:

Rand(C1, C2) =
pos + neg

n ∗ (n − 1)/2

Table 5. Category Utility and Rand Index for clusterings found

Data set CU CG CU CobWeb Rand Index
Breast-W 0.62 0.6496 ± 0.0001 0.91675 ± 0.006
Breast-W-equal 1.088 1.147 ± 1.95 ∗ 10−5 0.93093 ± 0.0025
Credit-A 0.379 0.374 ± 0.0178 0.95283 ± 0.148
Credit-A-equal 0.6241 0.6243 ± 0.00067 0.9959 ± 0.0034
Glass 0.301 0.291 ± 0.0125 0.90391 ± 0.081
Hepatitis 0.446 0.459 ± 0.0142 0.83667 ± 0.0534
Iris 0.5369 0.5321 ± 0.0083 0.91952 ± 0.0799
Sick 0.2132 0.2077 ± 0.0171 0.98196 ± 0.0567
Voting Record 1.362 1.468 ± 0.0001 0.85753 ± 0.0043
Zoo (6 clusters) 0.6398 0.6349 ± 0.005 0.994093 ± 0.0043
Zoo (5 clusters) 0.7187 0.7196 ± 0.004 0.964357 ± 0.0056

As can be seen in Table 5, the results of CG are comparable with those
of CobWeb. Indeed, the Category Utilities of the obtained clusterings are very
1 Due to the different orderings of the examples, CobWeb sometimes finds 5 clus-

ters and sometimes 6 in the zoo data set. Therefore, both 5 cluster and 6 cluster
experiments were performed using CG as well.
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similar. Sometimes, CG is slightly better, sometimes CobWeb is. Furthermore,
the Rand Index indicates that the agreement between the clusters found is high,
more than 90% in all but two cases.

On the other hand, CG computes definitions of the clusters, whereas CobWeb
does not. Therefore, as a final means of comparison, we employed the rule learner
PART [17], available within Weka, on the clusters produced by CobWeb. This
procedure allows one to obtain conjunctive rules describing the clusters com-
puted by CobWeb, which can then be compared to the conjunctive descriptions
generated by the CG.

Table 6. Rules learned on CobWeb clusters using PART

Data set CobWeb/CG-Rules Assignment Accuracy
Breast-W Superset 97.8%
Breast-W-equal Superset/Specializations 97.8%
Credit-A Same 100%
Credit-A-equal Same/Superset 99.7%
Glass Superset/Specializations 98.6%
Hepatitis Superset/Specializations 94.2%
Iris Same/Different 99.3%/100%
Sick Same/Superset 100%
Voting Record Superset 96.3
Zoo (6 clusters) Same 97%
Zoo (5 clusters) Same/Generalizations 98%

Table 6 shows the results of this evaluation. For each data set the relation
between rules learned on the CobWeb clusters and the rules computed by CG is
listed. Additionally, the right column, labeled Assignment Accuracy, shows
the fraction of instances that those rules would be assign to their correct clusters.
This is used as a measure for how well CobWeb’s clusters can be described by
conjunctive rules.

There are varying relations between CG’s and CobWeb’s rules. Superset
means that the CobWeb rules form a superset of the CG rules, Specializations
that they are specializations (Generalizations analogous), Same that the same
set of rules was found. Several entries for one data set denote that several Cob-
Web solutions (due to different ordering of instances) induced different rule sets
and therefore different relations.

A special case is the iris data set. On some CobWeb solutions PART induced
rules that were completely different from CG rules. Those had no misassign-
ments. The rules learned using PART provide further evidence that the results
obtained by CobWeb and CG are closely related. As CobWeb does not enforce
conjunctive descriptions of the clusters during its search process, it is more flex-
ible in assembling the clusters. However, because of the involvement of all at-
tributes in the representation the results are also less interpretable. Because the
resulting clusters are so close, CG seems preferable as it also produces symbolic
descriptions.
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7 Related Work

The CG algorithm is a substantial extension of the Morishita and Sese algorithm
for correlated pattern mining. They have also developed a clustering algorithm
based on their technique [13], the main difference being that their goal is to
cluster numerical values (gene expression levels) using interclass variance. They
also aim at describing the clusters found by conjunctions of binary attributes to
make the resulting clusters more human-understandable.

The cluster-grouping problem is also related to feature selection in concep-
tual clustering and semi-flexible prediction [18,19]. Talavera’s [18] motivation for
feature selection in conceptual clustering is somewhat related to our motivation
insofar as he is aiming for better comprehensibility, exclusion of irrelevant fea-
tures and more efficient clustering processes (both when creating and using the
clusters). There is also some similarity in where in the algorithm the feature
selection happens, since it is redone for each node in the hierarchical clustering
tree. This is called local or dynamic selection. The main differences are two-fold:
firstly, Talavera’s work still retains CobWeb’s representation and only achieves
better comprehensibility by reducing the number of considered attributes. Sec-
ondly, in his approach each attribute is scored before the actual clustering step,
whereas CG performs feature selection as part of the clustering process itself.

Cardie [19] defines semi-flexible prediction as learning to predict a set of
features known a priori as opposed to inflexible prediction (classification) and
flexible prediction (clustering). Her approach involves automated feature selec-
tion for each attribute to be predicted separately. These features are then used
in subsequent independent prediction of the attributes. In contrast, we attempt
to predict a disjunction of attributes from a shared set of antecedents instead.

Finally, cluster-grouping is in many aspects related to the confirmatory in-
duction setting in the Tertius system by Flach et al. [20]. As in CG, rules with
disjunctive rule heads are found. It is interesting to note in this context that the
rule head is treated as a single target while CG treats each literal separately.
Flach’s work abstracts from the general correlation setting in which correlation
is symmetric and instead focuses on the number of counter-instances to a given
rule, thus considering only directed associations. Using an optimistic estimate
(an upper bound) they prune non-promising candidates and find and rank op-
timal rules. Focusing on counter instances only allows more flexibility regarding
the rule head, i.e. the set of literals need not be fixed.

8 Conclusion and Future Work

We have introduced the problem of cluster-grouping and argued that it unifies
several popular data mining tasks. We developed the algorithm CG, a branch-
and-bound algorithm that relies on convex correlation functions to find opti-
mal solutions. The cluster-grouping framework lends itself in a natural way for
inductive querying. However, rather than imposing normal constraints, cluster-
grouping queries are a form of optimization query, in that they look for the k
best patterns.
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We have shown that our approach is an extension of Morishita’s and Sese’s
work in that it allows one to deal with several target attributes. We have provided
experimental evidence that the CG algorithm is well-suited for subgroup discov-
ery in that it offers significant advantages when compared to the CN2-WRAcc
approach, albeit sometimes at the cost of efficiency. CG is also competitive with
one of the best-known clustering algorithms, CobWeb, while creating better in-
terpretable solutions.

Further research will proceed in several directions. First, as can be seen in
the experiments, the effectiveness of the pruning step depends strongly on the
tightness of the upper bound calculated. Therefore, it is desirable to tighten
future support estimates and therefore attainable values of σ. Second, since
Information Gain is also convex, the technique should in principle be usable in
the formation of multi-variate decision trees [21]. Third, probably necessary for
usage with decision trees and an interesting extension in itself is the question of
how to extend the CG to handle target attributes having more than two values.
Fourth, since Foil-Gain is similar to Information Gain and also (under certain
assumptions) a convex function, extension of the CG algorithm to first-order
logic should be possible. Finally, in the context of inductive querying, some new
challenges are raised by optimization queries. Most notably, the question arises
as to whether we can integrate inductive optimization queries with the more
traditional monotonic and anti-monotonic constraints that have been employed
within the inductive querying literature.
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