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Abstract—Frequent episode mining has been proposed as a
data mining task with the goal of recovering sequential patterns
from temporal data sequences. While several episode mining
approaches have been proposed in the last fifteen years, most of
the developed techniques have not been evaluated on a common
benchmark data set, limiting the insights gained from experimen-
tal evaluations. In particular, it is unclear how well episodes are
actually being recovered, leaving an episode mining user without
guidelines in the knowledge discovery process. One reason for
this can be found in non-disclosure agreements that prevent real
life data sets on which approaches have been evaluated from
entering the public domain. But even easily accessible real life
data sets would not allow to ascertain miners’ abilities to identify
underlying patterns. A solution to this problem can be seen in
generating artificial data, which has the added advantage that
patterns can be known, allowing to evaluate the accuracy of
mined patterns. Based on insights and experiences stemming
from consultations with industrial partners and work with real
life data, we propose a data generator for the generation of
diverse data sets that reflect realistic data characteristics. We
discuss in detail which characteristics real life data can be
expected to have and how our generator models them. Finally,
we show that we can recreate artificial data that has been used
in the literature, contrast it with real life data showing very
different characteristics, and show how our generator can be
used to create data with realistic characteristics.

I. INTRODUCTION

In quite a few real life applications, data streams in

continuously and is stored as a sequence of time-stamped

events. Examples of such data include telecommunication

status messages, web logs, sensor readings of earth quakes,

sensor readings and status codes logged on assembly lines

or industrial machinery, network traffic, user interface traces,

and train schedules. If some of these events are considered

exceptional in some way, e.g. an alarm in an industrial plant

or a network traffic event that is considered an unauthorized

intrusion, an obvious data mining setting consists of trying

to identify patterns that appear in the time before these

special events. Such patterns can then be used to predict the

occurrence of related events in advance or to identify for

instance the root causes of an alarm that have to be corrected

to alleviate the situation.

Frequent episode mining has been proposed to address this

issue and in the last fifteen years, numerous papers have

proposed techniques for finding frequent episodes [1], [2], [3],

[4], [5], [6], [7], [8].

When faced with a temporal data set in the context of an

industry cooperation, we therefore turned to episode mining,

and experienced a typical problem in pattern mining: a large

output set, without a clear idea which of these patterns were

relevant. We then turned to the literature, expecting to find

guidelines but were disappointed: most of these techniques

have not been evaluated on a common benchmark set, let

alone a collection of benchmarks. The main reason for this is

that event data that is collected in industrial settings is often

covered by non-disclosure agreements (NDAs) that prohibit

those data from being passed on or put into the public domain.

This has prevented the emergence of collections of appropriate

data sets that could fulfill the roles the UCI repository has

for machine learning [9], the FIMI repository for itemset

mining [10], or the UCR collection of data for time series

classification and clustering [11].

Additionally, the enumeration of application settings above

shows how varied data contexts are. Since most NDAs prohibit

even the publication of data characteristics that could be stored

together with episode mining results in reference databases

[12], it is therefore unclear whether results from one applica-

tion setting can be expected to transfer to the other settings.

Finally, even if real life data with similar characteristics as

the data set in question were available, the lack of knowledge

about the underlying patterns in such data would make it

difficult to find out which of the returned patterns are relevant.

As a solution to this problem, we propose artificially gen-

erating data with controlled characteristics and known hidden

phenomena, as used in the single graph (network) mining [13]

and SAT solving communities [14]. Such a data generator

could then be used to guide knowledge discovery in the

following way: generate data with similar characteristics as

a real life data set under consideration, mine patterns on it,

apply the insights about pattern recovery to the result from

the real life data set. Such a generator should satisfy three

requirements:

1) It should make it possible to verify the results of mining

operations. (Verifiability)

2) It should be flexible, making it possible to generate

diverse data sets for benchmarking. (Diversity)

3) It should mirror real life data characteristics. (Realism)

In this paper we attempt to provide such a solution. The

starting point of this work is that, despite the lack of data, we

can develop a data generator that reflects industrial common

sense and practical experience and that is sufficiently general

to create wide ranges of datasets matching this experience.



In the following section we recount the basics of episode

mining. In Section III, we discuss related work, both in terms

of episode mining and data generation. In Section IV, we

discuss Laxman et al.’s data generator [5], critique some of

the assumptions made, and propose and argue for alternatives

and extensions. We also give a description of source episode

and data generation. In Section V, we show characteristics of

artificial data used in earlier work, contrast them with the real

life data at our disposal and show how to generate data with

similar characteristics as the real life data. Finally, in Section

VI, we summarize our work and conclude.

II. EPISODE MINING

We mainly follow the notation of [1]:

Given a class E of event types, an event is a pair (E, t), E ∈
E , t ∈ N

+. An event sequence S is a triple (ts, te, S) with ts
the starting time, te the end time, and S an ordered sequence

of events:

〈(E1, t1), . . . , (Em, tm)〉

with Ei ∈ E , ∀i : ts ≤ ti ≤ te and ∀ti, tj , i < j : ti ≤ tj ,

e.g.:

(1, 141, 〈(E, 1), (A, 12), (B, 15), (C, 25), (D, 26), (A, 36),
(B, 38), (C, 55), (E, 66), (D, 75), (A, 94), (E, 109),
(B, 124), (C, 131), (D, 141)〉)

An episode ǫ = (Vǫ,Eǫ, gǫ) is a set of nodes Vǫ, a partial

order Eǫ on Vǫ and a mapping gǫ : Vǫ 7→ E associating each

node with an event type. If the order is a total order, ǫ is called

serial, if there is no ordering at all, parallel, if both orders are

allowed in episodes, they are referred to as general. An episode

ǫ is said to occur in an event sequence S at interval [l, u] if

the events to which Vǫ are mapped occur in that interval in

the same order as they occur in the episode.

Example 1: An episode occurring in the event sequence

above would be ({v1, v2}, {v1 ⊳ v2}, {v1 7→ A, v2 7→ B}).
It occurs, e.g., in [94, 131]. If there is no repetition of events

in an episode, we fold the mapping of nodes to event types

into the set of vertices itself.

A window on S is an event sequence W = 〈twb, twe,W 〉
with ts ≤ twb ≤ twe ≤ te and

W = {(Ei, ti) ∈ S | twb ≤ ti ≤ twe}.

A window is said to be of size w = twe − twb + 1. Given S
and w we can define the set of all windows of size w on S:

aw(S)
Example 2: If we assume a maximal window size 15,

the first five windows were in order [1, 15], [2, 16], [3, 17],
[4,18], [5, 19] comprising the episodes: 〈E,A,B〉, 〈A,B〉,
〈A,B〉, 〈A,B〉, 〈A,B〉.

Given a fixed window size w, the frequency of ǫ is the

number of fixed-size windows on S in which it occurs:

freq(ǫ,S, w) = |{W ∈ aw(S) | ǫ occurs in W}|

So-called windows-based episode mining (WINEPI) [1] ap-

proaches require the user to specify a window size and a

frequency threshold.

By the same authors, an alternative frequency definition

has been proposed, that of minimal occurrences. A minimal

occurrence of ǫ is an interval [l, u] at which ǫ occurs, and for

which no proper sub-interval [l′, u′] ⊂ [l, u] exists such that ǫ
occurs at [l′, u′]. The frequency definition in this case changes

to the number of minimal occurrences of ǫ (MINEPI [2]).

Example 3: A minimal occurrence of ({A,B}, {A ⊳ B}),
for instance, is [12, 15], and of ({B,C,D}, {B⊳C,B⊳D,C⊳

D} [15, 26]. The frequency definition based on the number of

minimal occurrences of ǫ, e.g., freq(({A,B}, {A⊳B})) =
|{[12, 15], [36, 38], [94, 124]}| = 3, gives an arguably more

intuitive count.

As an improvement of the minimal occurrence semantic,

non-overlapping occurrence counts have been proposed [5],

[6], while [3], [4] aimed to move away from the fixed

nature of maximal windows and the problems it entails by

proposing frequency formulations based on inter-event time-

gap constraints.

III. RELATED WORK

A recent overview of temporal pattern mining techniques

can be found in [15]. Early work in the field [1], [2], [16],

[3], [4] used real life data for which the ground truth was not

known, augmented with non-temporal sequential data, i.e. text

or protein sequences. Non-temporal data has the characteristic

that only the order in which elements occur in the episode

is relevant, not the time delay between events. Most of the

real life data is not publicly available, and with the exception

of [16], algorithms have not been compared to each other on

those data.

More recent works [5], [6], [7], [8] have used artificial

data to experimentally validate their proposed approaches

in addition to real life data. Laxman et al. [5] proposed a

generative model based on HMMs, which assumes uniform

noise distribution. We will discuss their generator and the

underlying assumptions in more detail in the next section.

Tatti et al. [6], [8] used artificial data corresponding to extreme

cases to demonstrate the superiority of their technique in those

contexts.

Artificial data generation has been explored in more depth

in related fields. In the context of classification experiments

in stream data with concept drift, [17] generated data by

generating three-dimensional data points whose classification

is chosen based on the sum of the first two dimensions

compared against a threshold value. Class noise can be added.

The STAGGER concept generator was introduced in [18].

It generates instances described by three nominal attributes,

having two class labels. Class noise can be added. Bifet et al.

[19] used the tree generator introduced in [20] by generating

one source tree for each class and adding label drift during data

generation. Classification in data streams is clearly different

from episode mining – most importantly data points can be

expected to satisfy i.i.d. assumptions to a certain degree.

Nevertheless, as we will lay out in the next section, both the

concepts of class noise, and of drift correspond to aspects of

realistic data generation.



Mueen et al. [21] used a random walk generator to produce

large sets of numerical time series data for the purpose of

testing time series motif discovery algorithms. From the field

of process control comes the Tennessee Eastman generator

first described in [22], a complex generative model relating

numerical values.

IV. DATA CHARACTERISTICS AND GENERATION

The considerations outlined in the introduction lead us

to believe that there is need for a data generator that is

capable of mimicking real life data to aid with episode mining

use, and facilitate improvements in episode mining research.

Unfortunately, as we explained, the lack of real life data or

even characterizations of real life data sets makes it difficult

to come up with an unambiguous prescription of how artificial

data should look.

However, consultations with our industrial partners in the

context of a project allowed us to collect “common sense” as-

sumptions and practical experience with data and the systems

generating them. Specific properties of event sequences in an

industrial context are that

P1 time stamp information is important – events that occur

with large delay are unlikely to be related

P2 events can be missing – sensors may fail, or network

connections be interrupted, for instance

P3 events can repeat within a sequence – several threshold

violations could be needed before an alarm is triggered

P4 events can occur in more than one sequence – too high

and too low pressure could be detected by the same sensor

but lead to different alarm events

P5 machinery can be in different states – and therefore

generate different episodes at different times in the life

or production cycle

We use this information to guide our design decisions: in

the next section we quickly summarize the data generator

proposed in [5], contrasting its underlying assumptions with

the real-world insights listed above (Section IV-B), before we

discuss the plausibility of used distributions in Section IV-C.

A. The HMM-based generator

To the best of our knowledge, the HMM-based generative

model proposed in [5] is the so far most comprehensive

generator for artificial episode mining data. A very attractive

feature of this generator is that it first generates source

episodes which it then embeds in the data sequence. Any

mining results could therefore be compared to those source

episodes to gauge their accuracy, fulfilling the verifiability

requirement. The parameters of the model encompass:

• The noise probability parameter (p ∈ [0, 1]), i.e. the

probability that events do not belong to an embedded

episode. The authors report on experiments for p ∈
{0, 0.2, 0.3, 0.4, 0.5}.

Example 4: It is important to realize that the noise prob-

ability is applied per event. To give an example, let an

embedded episode take the form A → B → C → D. A

noise probability of 0.2 would result in 1 noise event per 5

events, i.e. 1 noise event and 1 episode, on average in the

data, e.g.: E, A,B,C,D,A,B,C,E, D,A,B,E, C,D (time-

stamps omitted). A noise probability p = 0.4 would result in 2

noise events per 5 events on average while conversely p = 0.1
results in only a single noise event per 10 events etc.

Any events that are not the result of episodic behavior are

expected to arise independently which makes event-wise noise

probability a plausible choice for modeling.

Additional parameters of the HMM generator are:

• The number of source episodes of which instances will

be embedded in the data (n).

• The length of source episodes (N ).

• The size of E (M ).

• The total length of the data sequence (T ).

Artificial data generated by this model can therefore be

characterized by a tuple 〈p, n,N,M, T 〉 with domain

〈[0, 1],N+,N+,N+,N+〉.

B. Extending the generator to fit real-world experiences

The HMM model makes a number of explicit and implicit

assumptions about data characteristics that are invariable,

violating the diversity requirement, in addition to the realism

requirement, as we will argue. First and foremost, the authors

consider time stamp information itself irrelevant:

“the actual values of event times are not important.

The event times are used only to order events and

only this ordering is needed to count episode occur-

rences. Thus, when analyzing the frequent episode

discovery process, it is enough to consider a model

which generates an ordered sequence of event types.”

As a result, time stamps, with which events are annotated,

are incremented by a “small random integer” every time an

event is created. No information is given about the interval

from which this integer is sampled and the sampling process.

On the one hand, this collides with practical property P1. On

the other hand, a larger interval from which to sample delays

would also lead to more variability, allowing to test a wider

range of data characteristics. We therefore add a parameter

controlling

• the explicit maximum delay between any two successive

events (g ∈ N
+). In the default setting time delays are

sampled uniformly from the interval [1, g].

Example 5: For a maximal delay of g = 20, the data

sequence in the preceding example (p = 0.2) might for

instance take the form: (E, 1), (A, 12), (B, 15), (C, 25),
(D, 26), (A, 36), (B, 38), (C, 55), (E, 66), (D, 75), (A, 94),
(E, 109), (B, 124), (C, 131), (D, 141).

Also, in viewing only the order of events as relevant,

Laxman et al. view the delay between any two successive

events in an embedded episode as unconstrained. In real world

phenomena one would expect a temporal correlation of events

generated by the same process, and we therefore add an

additional parameter to the model determining



• whether or not to enforce that any two successive events

of a source episode have at most a time delay of g when

embedded in the data (h ∈ {true, false}).

Example 6: To illustrate the effect that unconstrained time

delays have, consider a setting with g = 20, p = 0.2, and an

embedded episode of length 4. Uniform sampling over [1, 20]
will lead to an average delay of 10 between successive events.

For p = 0.2, this leads to an average episode duration of 40.

For p = 0.4, however, the average duration will increase to 67.

This means that the probability of noise affects the duration

of the signal in the unconstrained model.

Laxman et al. also make two assumptions about the events

involved in source episodes: a) event types do not repeat

within a single episode and b) different source episodes do

not share any event types, in contrast to P3 and P4. This is

not necessarily the case in real life data:
Example 7: A sensor reading could, e.g., exceed a certain

safety value but depending on the system, it might take several

such events for an alarm to be triggered, leading to an

embedded episode with repeating event types. Similarly, a

given warning might be caused by any of a variety of sensors

exceeding a safety threshold, causing several episodes to share

the last event type.

These considerations lead us to extend the model addition-

ally by parameters governing

• whether or not event types repeat in a single source

episodes (r ∈ {true, false}).

• whether or not different source episodes share event types

(s ∈ {true, false}).

The data in [5] is generated by interleaving the embedded

episodes randomly. While this not an unrealistic assumption,

interleaving episodes can be expected to make it much harder

for mining techniques to recover underlying patterns since

false occurrences of regularity can be detected. For the sake

of flexibility, we therefore add a parameter controlling

• whether embeddings of the same source episode can

interleave (i ∈ {true, false}).

The HMM model also embeds source episodes concurrently.

In contrast to this, a system, e.g. a production machine, could

be in different stages, e.g. peak performance, deterioration,

and near breakdown, with different episodes generated in

each stage (property P5). This is similar to the concept drift

explored in data streams. We therefore add an additional

parameter that affects

• whether source episodes are embedded successively or

not, i.e. concurrently (S ∈ {true, false}).

Finally, as mentioned in point P2, our experiences with

real world data lead us to add a failure probability parameter

modeling:

• whether information that should be logged, such as a

sensor reading, is in fact not logged (o ∈ [0, 1]). This

parameter is arguably related to the concept of “class

noise” in classification in data streams.

So far, we have only extended the generator with a number

of additional parameters, bringing it much more in line with

our (and others’) experiences with real-world data. Yet, the

data generator we propose will already allow to generate data

sets of a much larger variety that can be described by the

tuple 〈p, n,N,M, T, g, o, h, r, s, i, S〉 with domain

〈[0, 1],N+,N+,N+,N+,N+, [0, 1], {t, f}, {t, f}, {t, f}, {t, f}, {t, f}〉.

C. Adding realistic distributions

Among the assumptions made by Laxman et al. and others

are uniform distributions for noise events and distinct source

episodes. Deciding on appropriate distributions is more diffi-

cult than introducing parameters allowing for real-world like

behavior. On the one hand we would posit, however, that uni-

form distributions are not common in real-world phenomena,

generally speaking, with, e.g., normal or Poisson distributions

more common. On the other hand, empirical distributions

observed in the data at our disposal appear to be normally

or Poisson generated, as we will illustrate in Section V.

Arguably the first of the choices that can be questioned

is the assumption that all source episodes arise with the

same probability. In a real life system, some phenomena are

more likely to occur than others, with resulting effects on the

probability of recovering the patterns. We therefore make this

distinction explicit by adding a parameter that controls

• whether or not source episodes have different weights

(W ∈ {true, false}).

Also, while noise events can be expected to arise inde-

pendently from each other, assuming a uniform distribution

is rather restrictive since individual noise events can have

different probabilities. The data at our disposal shows event

types that are not normally distributed. Additionally, this

difference will have direct effects on any episode mining

operation since uniformly distributed noise should look very

different than recurrent phenomena whereas, for instance,

poisson-distributed noise can give the appearance of regularity.

We therefore add a parameter governing

• whether noise is normally or Poisson-distributed (P ∈
{u, p}).

Finally, a similar argument can be made w.r.t. time delays

between events: the time delays we observed show a distribu-

tion resembling a normal distribution and normal distributions

can be expected to occur in realistic data:

Example 8: Continuous sensor readings might overwhelm

the data storage of a production machine. If sensor readings

are taken every minute and an event is generated if readings

have changed by at least a certain amount, all events can be

expected to occur multiples of sixty seconds apart.

We therefore add parameters affecting the delay distribution:

• for noise (d ∈ {u, n}), and

• embedded episodes (D ∈ {u, n}).

Since it could happen that, for instance, noise has normally-

distributed delays while episode events appear with uniformly

distributed time delays, we do not want to supersede g, and

instead introduce a parameter G that determines the base

mean of the normal distribution (variance is set to G/10). To

allow for more complex delay distributions, we assume that



the actual distribution is a mixture of m normal distributions

with means G, . . . ,m ·G, respectively. The parameters of our

generator are shown in Table I, together with default values.

D. Data Generation

In this section, we outline how the different parameter

settings affect data generation algorithmically. We begin by

giving pseudocode of the algorithm generating source episodes

(Algorithm 1). Since the algorithm for generating the data

itself consists mainly of a number of nested if-then statements,

we abstain from pseudocode and instead give a natural lan-

guage description.

a) Generation of source episodes: As a first step in data

generation, we generate the source episode(s). For each of

the N event types per episode we sample uniformly from E .

If r = false, we reject the event if it already occurs in the

same source episode, if s = false, we reject it if it occurs

in a source episode that has been generated already. If r =
true and there has been no repetition on reaching the N th

element of an episode, we sample from the already involved

event types of this episode. If s = true and there has been no

shared event type on reaching the N th element of an episode,

we sample from the event types of already generated source

episodes. Finally, if W = true, we sample a weight for the

episode uniformly from (0, 1], and normalize the weights in

the end so that they sum to 1.

b) Data set generation: For the actual data set, we start

with a time stamp t = 1 and S = ∅. As long as |S| < T , we

generate a noise event with probability p, sampled according

to P from E , at time stamp t.
With probability 1 − p, an episode event is generated. If

S = true, source episode ǫi becomes embedded as long as the

event count M ·
∑i−1

j=1
weightj < M ′ ≤ M ·

∑i

j=1
weightj ,

otherwise all source episodes are embedded concurrently along

the entire length of the data sequence. In the latter case, if

i = false, one of the n source episodes is chosen randomly

(with equal probality if W = false, weighted otherwise). If

a partially embedded instance of that episode exists, the next

event type is read from it, otherwise a new embedding started.

If i = true, let PE be the set of partial embeddings. A

random integer value from [1, |PE|+1] is chosen, with |PE |+
1 corresponding to starting a new embedding (subject to the

constraints imposed by S).

Finally, t is increased with a random value δ ∈ [1, g],
if the delay distribution for the type of event (noise, or

otherwise) is uniform. Otherwise, the normal distribution to

be used is chosen by sampling from a geometric distribution

with mean 1/m, and δ sampled from the normal distribution

with the respective mean. If h = true and there is any

partial embedding whose last event occurred at time stamp

te : t + δ − te > g (te : t + δ − te > m · G) for a uniform

(normal) distribution, an event is generated from that partial

embedding at te + g (te + (m ·G)).1

1We have implemented the data generator in Java and it is available for
download at people.cs.kuleuven.be/∼albrecht.zimmermann/software.html.

Algorithm 1 Source episode generation

source = ∅
for 1 ≤ i ≤ n do

ǫi = (Vǫi = ∅,Eǫi = ∅, gǫi = ∅)
repeated = false

shared = false

for 1 ≤ j ≤ N do

while E not accepted do

E sampled uniformly from E
if r = false ∧∃v ∈ Vǫ : v 7→ E ∈ gǫ

reject E

else if r = true ∧∃v ∈ Vǫ : v 7→ E ∈ gǫ
accept E

repeated = true

else if r = true ∧ repeated = false ∧ j = N

sample E uniformly from gǫi(Vǫi)
accept E

if s = false ∧∃v ∈ Vǫi′
, i′ < i : v 7→ E ∈ gǫi′

reject E

else if s = true ∧∃v ∈ Vǫi′
, i′ < i : v 7→ E ∈ gǫi′

accept E

shared = true

else if s = true ∧ shared=false ∧j = N
sample E uniformly from

⋃
i′<i gǫi′ (Vǫi′

)
accept E

Vǫi = Vǫi ∪ vj
if j > 1
Eǫi = Eǫi ∪ {vj−1 E vj}

gǫi = gǫi ∪ {vj 7→ E}
source = source ∪ǫi
Sample weighti

for 1 ≤ i ≤ n do

weighti =
weighti∑

n
j=1

weightj

V. DATA EXAMPLES

As the preceding section shows, the proposed generator

satisfies the first two requirements: 1) the embedding of source

episodes allows the verification of episode mining results,

and 2) a number of numerical and nominal parameters give

it the flexibility to generate diverse data sets. We have also

argued that the third requirement – realism – is fulfilled.

In this section, we add empirical support that our generator

satisfies the realism requirement. We begin by generating data

consistent with the assumptions made in [5], [8] and discuss

their characteristics in the context of the respective papers’

underlying motivation. We then contrast those data with the

real life data sets at our disposal and outline how the generator

can be used to generate data with similar characteristics,

demonstrating its flexibility along the way.

A. Effect of noise probability and distribution on event type

distributions

The first two figures show the event type distribution of data

generated using settings used in [5], i.e. n = 2, p = 0.3, i =



Numerical parameters (default values) Nominal parameters (default settings)

p – probability of noise events (0.2) P ∈ {u, p} – noise is uniformly or Poisson distributed (u)
N – length of source episodes (4) r ∈ {t,f} – event types repeat in source episodes (f)
M – size of the alphabet of event types (20) s ∈ {t,f} – event types are shared among source episodes (f)
n – number of source episode (1) i ∈ {t,f} – embeddings of source episodes can interleave (f)
T – total number of events in the data (5000) W ∈ {t,f} – source episodes have different probabilities (f)
g – maximal delay between any two successive events (20) h ∈ {t,f} – delays between successive events of a source episode ≤ g (≤ m ·G) (f)
o – probability that a source episode’s event is not embedded (0.0) S ∈ {t,f} – source episodes are embedded successively (f)
G – “base mean” of a normal distributions (variance G/10) (300) d ∈ {u, n} – noise delays are uniformly or normally distributed (u)
m – number of normals to mix, with means G, 2G, . . . ,m ·M (1) D ∈ {u, n} – embedding delays are uniformly or normally distributed (u)

TABLE I
THE PARAMETERS OF THE DATA GENERATOR WITH DEFAULT SETTINGS IN PARENTHESES

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0  5  10  15  20  25

N
um

be
r 

of
 O

cc
ur

re
nc

es

Event

HMM-generated data

Fig. 1. Event type distribution of data generated by the HMM generator

true, h = false, P = u, and [8] (N = 8, p = 0.38, P = u).

As we mentioned in passing in Section III, these are specific

data sets generated to demonstrate superiority of the proposed

methods in particular circumstances.

In the first case (Figure 1), the event type distribution on

the one hand shows strongly expressed events involved in

embedded episodes, making recovering something related to

the underlying patterns relatively easy. On the other hand, there

are only few noise events so that overlap and close proximity

of embeddings can lead to the “discovery” of patterns that

are different from the source episodes. This is therefore

data set well-suited to demonstrating the superiority of non-

overlapping occurrence counts over traditional methods. In

addition, we assume that the General Motors data Laxman et

al. worked with showed characteristics that could be generated

using uniform distributions. Tatti et al. proposed mining closed

episodes [8]. Drawing noise labels from a very large alphabet

means clearly dominating embedded pattern (and combina-

tions and permutations of it), as Figure 2 show, leading

to an extremely large search space that would overwhelm

less sophisticated techniques. These two data sets are rather

specific and not necessarily representative of real life data. To

illustrate this further, consider Figure 3, showing an example

of the event type distribution of real life data we have worked

with, looking rather different.

To motivate our design decisions, we first attempt to ap-

proximate the distribution using uniform noise and episode

distributions (Figure 4). This data has been generated using

uniform noise distribution, n = 2, N = 4, and p = 0.7, much

higher than in the artificial data we just discussed. The distri-
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Fig. 3. Event type distribution in a example data set of our real life data

bution has more in common with the real life data than with

the artificial data sets but does not fit yet. Alternatively, we

can use source episodes having different weights, but continue

generating noise that is uniformly distributed. The event type

distribution of data generated in this way (n = 3, p = 0.2)

can be seen in Figure 5. We can see that the abrupt changes

in event type occurrence counts that can be observed in data

that uses only one source episode, or several source episodes

of equal probability, are becoming less pronounced. Finally,

Figure 6 shows the event type distribution that occurs if we

use poisson-distributed noise instead of uniformly distributed

noise. This data looks like the real life data at our proposal,

supporting our design decisions.

B. Parameter effects on time delay distribution

The second characteristic that we can use to describe a

data sequence compactly is the distribution of the time delays

between adjacent events in the data. Figure 7 shows the
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Fig. 4. Approximated real life like event type distribution using uniformly
distributed noise, and source episodes having equal probability
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Fig. 5. Approximated real life like event type distribution using uniformly
distributed noise, and source episodes having different probability

distribution of delays that results if we use the HMM generator

with g = 20.

Time delays are roughly uniformly distributed as per the

parameter used in generating them, and can therefore be con-

sidered uninformative, in keeping with Laxman et al.’s view

of time information. If, however, the time delays of embedded

episodes are independent of the amount and timestamps of

noise that occurred between episode events, i.e. if h is set to

true, the time delay distribution changes considerably (Figure

8), which can be expected to have an effect when windows-

or maximal-gap constraints are used in mining.

Once again, this difference in delay distributions will not

affect all episode mining approaches, in particularly if no or

very lenient time constraints are used. To be able to evaluate

the effect such differences will have, however, it is necessary
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Fig. 6. Approximated real life like event type distribution using Poisson
distributed noise, and source episodes having different probability
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to be able to specify different temporal behavior in the data.

This includes changing the distribution of time delay values.

As Figure 9 shows, the real life data we have at our disposal

shows a time delay distribution that is far different from a

uniform distribution.2

By setting the delay distributions to normal distributions,

m = 15, G = 300, we can achieve a similar looking

distribution, as can be seen in Figure 10. This means that

at this point, we can generate data with similar characteristics

to the real life data at our disposal.

C. Discussion

As we have shown, our generator is capable of generating

data with similar characteristics as our real life data and

2The figure shows only the first three peaks – the entire range of time
stamps reaches into the hundreds of thousands, with increasingly lower peaks
up to 4500
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Fig. 10. First section of real life like time delay distribution

could therefore guide us in knowledge discovery.There are

several parameters whose effect will not be obvious from

event type and delay distributions but that can be expected

to affect effectiveness and efficiency of mining operations.

Whether several source episodes are embedded concurrently or

successively, for instance, will not lead to changes in the event

type distribution but a mining algorithm that is confronted

by several overlapping regularities will have a harder time

recovering them than if they can be identified one after the

other.

We believe that the assumptions we made in defining

parameters will allow others to simulate their real life data in

a similar way, making episode mining use easier. In addition,

generating data with a wide range of characteristics would

allow to extensively benchmark episode mining approaches,

which has not been done so far.

VI. SUMMARY AND CONCLUSION

In this work, we have proposed a data generator capable

of generating real life like data sequences exhibiting a wide

range of characteristics. An important feature of the generator

is that the embedding of distinct source patterns makes it

possible to compare the result of mining operations with the

underlying phenomena. One way of using the generator for

verifying and evaluating results from real life data would

consist of generating data with similar characteristics as the

data set in question, mining patterns, and gaining insights

into pattern recovery. To support this, our generator is very

flexible, generating data governed by a variety of parameters.

In addition to adjusting the amount of noise, the number and

length of source episodes, alphabet of possible event types, and

length time delays, our generator has a number of additional

parameters that govern how source episodes interact with each

other, and how likely their embeddings are to be corrupted.

Finally, the generator includes different distributions governing

noise events and time delays.

We have also shown that we are capable of recreating

data both with characteristics similar to challenging artificial

data used in existing work on episode mining, and with

characteristics in line with real life data sets we have worked

with.

We have also performed an empirical evaluation on several

episode mining approaches, using data generated by the gen-

erator proposed in this paper. Most interestingly, we find that

even for relatively easy settings, source episodes rank at best

among the top-10 results of a mining operation, and that for

real life like settings recovery of source episodes is not very

successful.
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