
Objectively evaluating interestingness measures

for frequent itemset mining

Albrecht Zimmermann
albrecht.zimmermann@cs.kuleuven.be

KU Leuven, Celestijnenlaan 200A, B-3001 Leuven, Belgium

Abstract. Itemset mining approaches, while having been studied for
more than 15 years, have been evaluated only on a handful of data sets.
In particular, they have never been evaluated on data sets for which the
ground truth was known. As a result of this, it is currently unknown
whether itemset mining techniques actually recover underlying patterns.
Since the weakness of the algorithmically attractive support/confidence
framework became apparent early on, a number of interestingness mea-
sures have been proposed. Their utility, however has not been evaluated,
except for attempts to establish congruence with expert opinions. Using
an extension of the Quest generator proposed in the original itemset min-
ing paper, we propose to evaluate these measure objectively for the first
time, showing how many non-relevant patterns slip through the cracks.

1 Introduction

Frequent itemset mining (FIM) was introduced almost twenty years ago [1] and
the framework has proven to be very successful since. Not only did it spawn
related approaches to mining patterns in sequentially, tree, and graph-structured
data, but due its relative simplicity it has been extended beyond the mining
of supermarket baskets towards general correlation discovery between attribute
value pairs, discovery of co-expressed genes, and classification rules, to name a
few.

The original framework used frequency of itemsets in the data (support) as
a significance criterion – itemsets that occur often are assumed not to be chance
occurrences – and conditional probability of the right-hand side of association
rules (confidence) as a correlation criterion. Both of these measures have clear
weaknesses, however, and a number of other interestingness measures have been
proposed in the years since the seminal paper was published [2], as well as several
condensed representations [3–6] that attempt to remove redundant information
from the result set.

While each of these measures and condensed representations is well-motivated,
there is as of yet no consensus about how effectively existing correlations are in
fact discovered. A prime reason for this can be seen in the difficulty of evaluating
the quality of data mining results. In classification or regression tasks, there is a
clearly defined target value, often objectively measured or derived from expert



labeling a priori to the mining/modeling process, that algorithmic results can
be compared to to assess the goodness of fit. In clustering research, the problem
is somewhat more pronounced but clusters can be evaluated w.r.t. intra-cluster
similarity and inter-clusters dissimilarity, knowledge about predefined groups
might be available, e.g. by equating them with underlying classes, and last but
not least there exist generators for artificial data [7]. In FIM, in contrast, while
the seminal paper introduced a data generator as well, that data generator has
been used only for efficiency estimations and fell furthermore into some disre-
gard after Zheng et al. showed that the data it generated had characteristics that
were not in line with real-life data sets [8]. The current, rather small collection
of benchmark sets, hosted at the FIMI repository [9], consists of data sets whose
underlying patterns are unknown. As an alternative, patterns mined using dif-
ferent measures have been shown to human “domain experts” who were asked to
assess their interestingness [10]. Given humans’ tendency to see patterns where
none occur, insights gained from this approach might be limited.

Interestingly enough, however, the Quest generator proposed by Agrawal et
al. already includes everything needed to perform such assessments: it generates
data by embedding source itemsets, making it possible to check mining results
against a gold standard of predefined patterns. Other data generation methods
proposed since [11–17] do not use clearly defined patterns and can therefore
not be used for this kind of analysis. Furthermore, data can be generated us-
ing different combinations of the number of items and source itemsets in the
data, allowing to simulate different data densities which would allow to do more
comprehensive run time experiments. And of course, different combinations of
transaction and itemset sizes can be used.

The contribution of this work is that we repurpose the Quest generator ac-
cordingly and address one of the open questions for the first time:

– How effective are different interestingness measures in recovering embedded
source itemsets?

In the next section, we introduce the basics of the FIM setting, and discuss
different interestingness measures. In Section 3, we describe the parameters of
the Quest generator and its data generation process. Equipped with this infor-
mation, we can discuss related work in Section 4, placing our contribution into
context and motivating it further. Following this, we report on an experimental
evaluation of pattern recovery in Section 5), before we conclude in Section 6.

2 The FIM setting

We employ the usual notations in that we assume a collection of items I =
{i1, . . . , iN}, and call a set of items I ⊆ I an itemset, of size |I|. In the same
manner, we refer to a transaction t ⊆ I of size |t|, and a data set T ⊆ 2I , of
size |T |. An itemset I matches (or is supported by) a transaction t iff I ⊆ t, and
the support of I is sup(I, T ) = |{t ∈ T | I ⊆ t}|, and its relative support or

frequency freq(I, T ) = sup(I,T )
|T | . The confidence of an association rule formed of



two itemsetsX,Y ⊂ I, X∩T = ∅ is calculated as conf(X ⇒ Y, T ) = sup(X∪Y,T )
sup(X,T ) .

When the context makes it clear which data set is referred to, we drop T from
the notation.

2.1 Interestingness measures

The support/confidence framework has at least one major drawback in that it
ignores prior probabilities. Assume, for instance, two items i1, i2 with freq(i1) =
0.6, freq(i2) = 0.8. While freq(i1, i2) = 0.48 would often denote the itemset as
a high-frequency itemset, it is in fact exactly what would be expected given
independence of the two items. Similarly, conf(i1 ⇒ i2) = 0.8, while clearly a
high confidence value, would also indicate independence when compared to the
prior frequency of i2. Therefore, numerous other measures have been proposed
to address these shortcoming [18].

Most of them have been proposed for assessing the quality of association
rules, meaning that they relate two binary variables. Generally speaking, it is
possible to use such measures more generally to assess the quality of itemsets in
the following way. Given an interestingness measure m : I × I 7→ R, itemset I,
we can take the minimal value over all possible association rules with a single
item in the right-hand side (RHS): mini∈I{m(I \ i ⇒ i}). This is the approach
taken in the FIM implementations of Christian Borgelt1 and since we employ
those in our experiments, we evaluated the included additional measures as well.

Our primary aim, however, is to test the recovery of itemsets, the precursors
to association rules, and we therefore focus on measures that have been proposed
to mine interesting itemsets. To make it easier to discuss those more sophisticated
measures, we associate each itemset with a function I : T 7→ {0, 1}, with I(t) = 1
iff I ⊆ t and I(t) = 0 otherwise, which allows us to define an equivalence relation
based on a collection of itemsets {I1, . . . , Ik}:

∼{I1,...,Ik}= {(t1, t2) ∈ T × T | ∀Ii, Ij : Ii(t1) = Ij(t2)}

Using this equivalence relation, the partition or quotient set of T over {I1, . . . , Ik}
is defined as:

T / ∼{I1,...,Ik}=
⋃

t∈T

{a ∈ T | a ∼{I1,...,Ik} t}

We label each block b ∈ T / ∼{I1,...,Ik} with a subscript denoting what the
different itemsets evaluate to, e.g. b1010.

The first three measures are available as options for itemset evaluation in
Christian Borgelt’s implementations.

Lift The lift measure was introduced in [19] and compares the conditional prob-
ability of an association rule’s RHS to its unconditional probability: lift(X ⇒

Y ) = conf(X⇒Y )
freq(X) . A lift value larger than one denotes evidence of a positive

correlation, a value smaller than one negative correlation.

1 Downloadable at http://www.borgelt.net/fpm.html.



Information gain Information gain is best known for choosing the splitting test
in inner nodes of decision trees. For a given RHS Y , it measures the reduction
of its entropy:

H(Y, T ) = −
∑

b∈T /∼{Y }

|b|

|T |
log2

|b|

|T |

by the presence of the LHS X :

IG(X ⇒ Y ) = H(Y, T )−
∑

b∈T /∼{X}

|b|

|T |
H(Y, b)

Normalized χ2 The χ2 test is a test for statistical independence of categorical
variables. For the two-variable case given by RHS Y and LHS X , occurrence
counts can be arranged in a contingency table:

Y = 1 Y = 0
X = 1 |b11| |b10| sup(X)
X = 0 |b01| |b00| |T | − sup(X)

sup(Y ) |T | − sup(Y ) |T |

To derive the χ2 value, the observed values are compared to the expected value

(the normalized product of the margins, e.g. E11 = sup(X)
|T | · sup(Y )

|T | · |T |):

χ2(X ⇒ Y ) =

1∑

i=0

1∑

j=0

(|bij | − Eij)
2

Eij

The χ2 value scales with the number of cases the LHS occurs in. To normalize
this value, Borgelt’s FIM implementations normalize this value by the support
of the LHS.

Multi-way χ2 Brin et al. proposed to use the χ2 test to evaluate itemsets directly
[20]. Each item i ∈ I is considered its own itemset and instead of a 2 × 2 con-
tingency table, a multiway table with 2|I| cells is populated by the cardinalities
of the blocks derived from T / ∼{i|i∈I}. The χ

2-value is calculated as in the two-

dimensional case. The degrees of freedom for such a table are df(I) = 2|I|−1−|I|,
and if the χ2 value exceeds a given p-value for that many df , the itemset is con-
sidered significant. Brin et al. also propose an interest measure for individuals
cells: interest(bv) = |1 − Ov

Ev

|, and propose to consider the combination of item
presences and absences of the cell with the highest interest value the most rele-
vant contribution of the found itemset.

Entropy The entropy definition used for a binary variable above can be extended
to partitions with more than two blocks and therefore used on the partition
induced by the items of an itemset, similar to the preceding treatment of χ2:

H({i | i ∈ I}) = −
∑

b∈T /∼{i|i∈I}

|b|

|T |
log2(

|b|

|T |
)



The entropy is highest, equal to |I|, if all blocks are equally likely, and 0 if there
is only one block. Heikinheimo et al. have proposed mining low-entropy itemsets
[21].

Maximum Entropy evaluation Not a measure per se, De Bie has proposed to use
maximum entropy models to sample data sets that conform to certain constraints
derived from T , e.g. row and column margins, i.e. support of individual items and
sizes of transactions, in the expectation [17]. Found patterns can be reevaluated
on these databases and rejected if they occur in more than a certain proportion
of them.

3 The Quest generator

The Quest generator was introduced in the paper that jump-started the area of
frequent itemset mining (FIM), and arguably the entire pattern mining field [1].
The generative process is governed by a number of parameters:

– L – the number of potentially large itemsets (source itemsets) embedded in
the data.

– N – the number of items from which source itemsets can be assembled.
– |I| – the average size of source itemsets.
– |t| – the average size of transactions in the data.
– |T | – the cardinality of the data set.
– c – the “correlation level” between successive itemsets.

The generator proceeds in two phases: it first generates all source itemsets,
and in a second step assembles the transactions that make up the full data set
from these source itemsets. The authors, working in the shopping basket setting,
aimed to model the phenomenon that certain items are typically bought together
and several such groups of items would make up a transaction. This also means
that the output of FIM operations can be compared to the source itemsets to
get an impression of how well such mining operations recover the underlying
patterns, i.e. the individual typical shopping baskets.

3.1 Source itemset generation

For each of the L source itemsets, the size is sampled from a Poisson distri-
bution with mean I. A fraction of the items used in the source itemset formed
in iteration i are taken randomly from the itemset formed in iteration i − 1.
This fraction is sampled from an exponential distribution with mean c. The rest
of the items are sampled uniformly from N . Each source itemset is assigned a
weight, i.e. its probability of occurring in the data, sampled from an exponential
distribution with unit mean, and a corruption level, i.e. a probability value for
only the partial source itemset embedded into a transaction, sampled from a
normal distribution with mean 0.5 and variance 0.1. Source itemsets’ weights
are normalized so that they sum to 1.0.



3.2 Transaction generation

For each of the D transactions, the size is sampled from a Poisson distribution
with mean T . Source itemsets to be embedded into the transaction are chosen ac-
cording to their weight, and their items embedded according to their corruption
level. Importantly, this means that source itemsets are selected independently
from each other.

If the number of items to be embedded exceeds the remaining size of the
transaction, in half the cases the items are embedded anyway, and the transaction
made larger, in the other half of the cases, the transaction is made smaller, and
the items transferred for embedding into the succeeding transaction.

4 Related work

The seminal paper on FIM, which also introduced the Quest generator, was pub-
lished almost twenty years ago [1]. The authors used the generator to system-
atically explore the effects of data characteristics on their proposed algorithm,
using several different transaction and source itemset sizes, evaluating a number
of values for the data set cardinality (9 values), the number of items in the data
(5 values), and transaction sizes (6 values) while keeping the other parameters
fixed, respectively, specifically the number of source itemsets used. It is unclear
whether more than data set was mined for each setting, a question that becomes
relevant given the probabilistic nature of the correlation, corruption, and source
itemset weight effects.

A similar kind of systematic evaluation can still be found in [22], although the
authors did not evaluate the effect of different values for N (and also continue to
keep L fixed throughout). The evaluation found in [23], however, already limits
itself to only two Quest-generated data sets. In line with this trend, the author
of [24] used only four Quest-generated data sets which he augmented by three
UCI data sets [25], and PUSMB data sets that act as stand-ins for “dense” data
sets, i.e. sets with relatively few items coupled with large transaction sizes. The
evaluation reported in [26] uses one artificial data set, one UCI data set, and the
PUSMB data set.

The systematic use of the Quest generator came to a virtual halt after Zheng
et al. reported that one of the Quest-generated data sets shows different charac-
teristics from real-life data and that algorithmic improvements reported in the
literature did not transfer to real-life data [8]. Notably, the authors pointed out
that Closet [26] scales worse than Charm [27], a result that Zaki et al. verified
in revisiting their work and comparing against Closet as well [28], and that
runs contrary to the experimental evidence presented in [26] by the authors of
Closet, probably due to the difference in used data sets.

The typical evaluation of FIM related approaches afterwards consisted of
using two Quest-generated data sets, a number of UCI data sets, and the real-life
data sets made available to the community, e.g. in the Frequent Itemset Mining
Implementation competitions [29, 9]. This has lead to the paradoxical situation



that while techniques for FIM have proliferated, the amount of data sets on
which they have been evaluated has shrunk, in addition to a lack of control
over these data sets’ characteristics. Also, all evaluations limited themselves to
evaluating efficiency questions.

In the same period, data sets begun to be characterized by the distribution of
the patterns mined from them, starting with [28] and continued in [11, 12, 6, 30,
31]. These analyses have given rise to techniques for “’inverse itemset mining”
that, starting from FIM results, generate data leading to the same distribution
of mined itemsets. While these data sets could be used for efficiency evaluations,
they are dependent on the data from which patterns are mined in the first
place, and the lack of clearly defined patterns prevents quality evaluations. In a
similar vein falls the generator proposed in [15] which uses the MDL principle to
generate data sets that will lead to similar itemsets mined, even though it serves
a different purpose, namely to protect the anonymity of original data sources.

Finally, FIM research has spawned a large number of interestingness measures
and literature discussing what desirable characteristics of such measures are [32,
33]. It is at present unknown, however, whether any of these measures manages
to recover the patterns underlying the data, and the closest research has come
to such evaluations are attempts to establish how well interestingness measures
for association rules align with domain experts’ interest [34, 35]

5 Pattern recovery

The fact that the Quest generator assembles transactions in terms of source
itemsets gives us the unique opportunity to compare the output of a frequent
itemset mining operation to the original patterns. Note that this is different from
the approach taken in [11, 12, 15, 16] – in those works databases were generated
that would result in the itemsets (or at least of the same number of itemsets of
certain sizes) being mined that informed the generating process. Contrary to this,
we cannot be sure that the output of the frequent itemset mining operation has
any relation to the source patterns from which the data is generated, although we
of course expect that that would be the case. To the best of our knowledge, this
is the first time that such an objective comparison of mined to source itemsets
has been performed.

5.1 Experimental setup

For reasons of computational efficiency, we use only few (10, 100) source itemsets
in our experiments. This allows us to mine with relatively high support thresh-
olds without having to expect missing (too many) source itemsets. We generate
data with N = 2000, T = 10, I = 4, with corruption turned off. We generate 100
data sets for each setting and average the results over them. Since we are not
considering run times at this point, we used Apriori in Christian Borgelt’s im-
plementation with support threshold 100/L%, a generous threshold given that
we can expect each transaction to consist on average of 10/4 = 2.5 itemsets.



This corresponds to a relatively easy setting since the source itemsets have high
support and apart from the correlation-induced overlap, items are unlikely to
appear in several itemsets.

We mine three types of patterns: frequent itemsets, closed itemsets, and
maximal itemsets. While frequent itemsets will be guaranteed to include all
source itemsets recoverable at the minimum support threshold, they will also
include all of their subsets, and possibly additional combinations of items. Closed
itemsets might miss some source itemsets if the probabilistic process of the Quest
generator often groups two itemsets together while generating transactions, an
effect that should not be very pronounced over 100 data sets, however. On the
other hand can closed itemsets be expected to avoid finding subsets of frequent
sets unless those are intersections of source itemsets, and to restrict supersets of
source itemsets to unions of them. Maximal itemsets, finally, can be expected to
consist of unions of source itemsets.

For each pattern type, we filter according to the different measures after-
wards:

a) Lift: independence is equivalent to a value of 1, we use a threshold of 1.01.
b) Information gain: independence will manifest as IG = 0, therefore we set the

threshold to 0.01.
c) Normalized χ2: the value can lie between 0 and 1, we therefore set the thresh-

old to 0.01.
d) Multi-way χ2: no threshold is needed for this measure but a significance level,

we choose 0.05. A high score does not always indicate that the itemset as a
whole is relevant, however. To interpret selected itemsets, we use the block
with the highest interest value. To give an example, if {i1, i2, i3} attains a
high score but the block with highest interest is b101, we interpret {i1, i3} as
the pattern, and i2 as being negatively correlated with it, hence coming from
a different source itemset. For this measure, we can therefore also assess how
many negative correlations were identified, and how many of those correctly.

e) Entropy: there is not clear way to set a maximal threshold for entropy. We
require for the entropy of itemsets to be at most half of the maximal entropy
for a set of that size.

f) Maximum entropy evaluation: we use an empirical p-value of 0.05 to reject
the null hypothesis that the items in an itemset are independent from each
other, i.e. an itemset must not be frequent on more than 5% of the sampled
data sets. We sample 100 times from the maximum entropy model of each
data set. We will therefore risk false negatives but evaluating patterns on
10000 data sets already taxes our computational resources.

g) Pairwise χ2: we also added an additional measure, calculating the χ2 value
for any pair of items in the set, normalizing and requiring a minimum value
of 0.01.

5.2 Data sets created without corruption of source itemsets

Pattern counts are shown cumulatively so that the top of the bar corresponds
to the total amount of itemsets mined, and vertical show the proportion taken
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Fig. 1. Results for mining frequent itemsets for L = 10 and L = 100, no corruption

up by different categories of itemsets. We show the actual itemsets recovered,
unions of itemsets, intersections of itemsets, subsets of itemsets that cannot be
mapped to intersections, and itemsets that we cannot map to source itemsets at
all, labeled “spurious”.

Figure 1 shows the results for mining frequent patterns on uncorrupted data,
with L = 10 on the left-hand side, and L = 100 on the right-hand side. The
first setting, mining frequent patterns for L = 10 without corruption leads to
the largest result sets, larger than for L = 100, so that filtering for entropy
and multi-way χ2, and evaluation through Maximum Entropy models was not
finished by the time of submission and those results are therefore preliminary. As
can be seen, most source pattern can be recovered, however a large part of the
output is taken up by subsets of the frequent itemsets and since those correspond
to correlating items, the additional measures are not able to remove them. It is a
bit surprising to see how many spurious itemsets, i.e. combination of items that
do not originate from source itemsets, are not removed by the interestingness
measures.
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Fig. 2. Results for mining closed itemsets for L = 10 and L = 100, no corruption

Mining closed patterns removes most of the subsets from the result set and
leaves the output much more manageable (Figure 2). We see that pairwise χ2

is a very aggressive criterion, reducing not only the amount of spurious itemsets



but also rejecting source itemsets, as does the Maximum Entropy evaluation due
to the false negative effects. On the other hand are quite a few spurious sets not
filtered out by the MaxEnt evaluation. The association rule measures are effective
in filtering itemsets, as is multiway χ2, which has the added advantage that it
separates out negative correlations and therefore recovers more intersections of
itemsets.
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Fig. 3. Results for mining maximal itemsets for L = 10 and L = 100, no corruption

Mining maximal itemsets, finally, reduces the result set to roughly the amount
of source itemsets but only half of those are related to source itemsets, as Figure
3. The trends that can be observed for closed sets hold here as well, with multiway
χ2 recovering additional source itemsets, pairwise χ2 filtering aggressively, and
the other measures reducing non-relevant patterns somewhat.

It is interesting to see that the association rule measures that have not been
designed to evaluate itemsets as such are more effective in reducing the result
sets than the itemset measures. In the case of multiway χ2, this seems to be the
price for recovering additional patterns by identifying negative correlations.

All measures were used with rather lenient thresholds and stricter thresholds
might improve their performance. The problem is, however, that deciding which
threshold to use is not straight-forward when working with real life data.

Given that this uncorrupted embedding of source itemsets is the best-case
scenario, an obvious next question is what effect pattern corruption has on the
output. The authors of [1] motivated such corruption by shoppers that might
not need all ingredients of a shopping basket, for instance, but in other settings,
e.g. sensorial data, corruption might result from weak signals or malfunctioning
equipment.

5.3 Data sets created with corruption of source itemsets

The settings used in the preceding section are relatively easy: source itemsets are
embedded without corruption so that they should be well recoverable. In real-
life data, however, it is possible that patterns are being corrupted while they are
being acquired, making the task of identifying them harder. Since the decision



which items are not embedded is independently made for each item, corruption
should occur uniformly and still enable itemset recovery, however.
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Fig. 4. Results for mining frequent and closed itemsets for L = 100, with corruption

As we see in Figures 4, however, the deterioration is significant. Only few
itemsets in the result set correspond to source itemsets. Instead, the result set
consists mainly of fragments of the source itemsets and while the interestingness
measures are effective in filtering out spurious sets, reducing the rest of the result
set would be up to the user. Page constraints prevent us from showing the plot
for maximal itemsets but the trends we have seen for L = 10 and for the other
two pattern types for L = 100 hold there as well.

As our experiments have shown, FIM results should definitely be taken with a
grain of salt. Even by using additional interestingness measures, it is not assured
that the mining process recovers the patterns underlying the data.

6 Summary and Conclusions

In this work, we have for the first time evaluated interestingness measures for
frequent itemset mining objectively. Due to a lack of data whose underlying
patterns are unknown and whose characteristics cannot be easily controlled, it
had been currently unknown how effective FIM approaches are in recovering the
underlying patterns.

We have revisited to Almaden Quest data generator, and have used the fact
that it constructs data from explicit patterns. By generating data sets and per-
forming frequent itemset mining on them, we could compare the mined patterns
against the source itemsets used to construct the data. We found not only that
mining frequent, closed, or maximal patterns leads to result sets that include
many non-relevant patterns in addition to source itemsets but also that sev-
eral interestingness measures that have been proposed in the literature are only
partially effective in reducing the result set to the relevant patterns.

The ramifications of our results could be far-reaching: our experiments call
the usefulness of itemset mining results into question since underlying patterns
cannot be reliably recovered. Clear-cut evidence for such usefulness could take



the form of implementing gained knowledge in the domains in which the data
originate but such evaluations do not exist to the best of our knowledge. Using
domain experts to evaluate itemset mining results, while easier and cheaper, has
its pitfalls and current interestingness measures might not be up to the task of
identifying the relevant itemsets. This is a challenge the community needs to
take on to increase the utilization of itemset mining in non-academic contexts.

We have mentioned above that the Quest generator could also be used to
generate data sets with different transaction lengths, densities etc. The generator
would need to be modified to address the concerns raised by Zheng et al. but
such a modified generator could then be used to stage more comprehensive run
times evaluations as well. We are currently performing such research.
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14. A. Gionis, H. Mannila, T. Mielikäinen, and P. Tsaparas, “Assessing data mining results via swap randomiza-

tion,” TKDD, vol. 1, no. 3, 2007.
15. J. Vreeken, M. van Leeuwen, and A. Siebes, “Preserving privacy through data generation,” in ICDM, IEEE

Computer Society, 2007, pp. 685–690.
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