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Abstract  11 

This paper presents a novel approach called Pharmacophore Activity Delta for extracting 12 

outstanding pharmacophores from a chemogenomic dataset, with a specific focus on a kinase 13 

target known as BCR-ABL. The method involves constructing a Hasse diagram, referred to as 14 

the pharmacophore network, by utilizing the subgraph partial order as an initial step, leading to 15 

the identification of pharmacophores for further evaluation. A pharmacophore is classified as a 16 

‘Pharmacophore Activity Delta’ if its capability to effectively discriminate between active vs 17 

inactive molecules significantly deviates (by at least δ standard deviations) from the mean 18 

capability of its related pharmacophores. Among the 1,479 molecules associated to BCR-ABL 19 

binding data, 130 Pharmacophore Activity Delta were identified. The pharmacophore network 20 

reveals distinct regions associated with active and inactive molecules. The study includes a 21 

discussion on representative key areas linked to different pharmacophores, emphasizing 22 

structure-activity relationships.  23 
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Introduction 27 

The investigation of structure−activity relationships (Structure−Activity Relationships, SAR: 28 

relationship between the structures of chemicals and their biological activities) represents one 29 

of the most important tasks during the early stages of the drug discovery process [1]. The 30 

definition of pharmacophores as a key to drug design is very well accepted in the field of 31 

medicinal chemistry and is a key point to understand a molecule’s affinity for a biological 32 

receptor [2]. In our initial publication on topological pharmacophores [3], we described the 33 

logic for the definition of a new type of descriptor based on the notion of emergent 34 

pharmacophores. We repeat some points here to clarify the objectives of this work. 35 

A pharmacophore corresponds to the greatest common structural denominator associated with 36 

a group of compounds exhibiting the same biological response profile [4]. Given a specific 37 

target, ligand-based pharmacophore elucidation requires the detection of the spatial 38 

arrangement of a combination of chemical features shared by several active molecules and 39 

responsible for favorable interactions with the active site. To discover these common anchoring 40 

features, the usual method starts with a careful selection of a small subset of ligands known for 41 

binding to the same active site with the same binding mode [5]. We have done several studies 42 

with this approach (see [6] for an example). 43 

In recent years, the integration of large chemical databases [7] into the definition of SARs has 44 

been clearly explored. With SARs and pharmacophores in mind, we have introduced a method 45 

that automatically computes pharmacophores from a large data set of molecules without any 46 

prior supervised selection of a small subset of molecules [3]. That method was based on the 47 

computation of the so-called topological pharmacophores [8, 9].  48 

Considering graph theory, 2D topological pharmacophores represent patterns which are present 49 

in a number of chemical structures. When applied to a data set partitioned into two classes (e.g., 50 

active vs. inactive molecules), emerging pattern mining can identify the patterns that occur with 51 

higher frequency in one of the two classes [3]. 52 

Of these topological pharmacophores, we can highlight those associated with particular 53 

properties. We have previously explored a selection based on a growth rate value called GR 54 

(Growth rate, GR: ratio of frequencies of appearance of a pharmacophore in a given class of 55 

molecules compared to the other class (active or inactive compounds on BCR-ABL)). It 56 

corresponds to the frequency of appearance of a pharmacophore in one class (active, for 57 

example) compared to another. An initial selection was based on a value of 3 for the GR (ratio 58 

of 3:1 for the frequencies between the two groups). A technique named Maximal Marginal 59 

Relevance Feature Selection (Maximal Marginal Relevance Feature Selection, MMRFS : 60 

selection of relevant pharmacophores by considering their number of associated chemicals and 61 

their GR values) [10] has also allowed us to select a restricted subset of these topological 62 

pharmacophores. This subset keeps the same statistical performance as the complete set 63 

(sensitivity/specificity) with equivalent coverage of the compounds. First, pharmacophore 64 

networks were defined based on these subsets by considering a graph editing distance [11] for 65 

the calculation of the similarity between MMRFS pharmacophores and clustering techniques 66 

[12]. For SAR studies and only for this objective, we have thought of inverting the frequencies 67 

(inactive vs. active) and thus characterized topological pharmacophores associated with inactive 68 

compounds. This gave us new insights into our data even if we are far from the historical 69 

definition of pharmacophores. 70 
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In this study, we have chosen to focus on another view of our topological pharmacophores with 71 

the definition of outstanding pharmacophores named Pharmacophore Activity Delta 72 

(Pharmacophore Activity Delta, PAD : Pharmacophore for which the discrimination between 73 

active vs inactive molecules significantly deviates from the mean capability of its related 74 

pharmacophores.). To find these PADs, a Hasse diagram [13, 14] was defined as a 75 

representation of the set of pharmacophores. This Hasse diagram corresponds to a partial order 76 

graph [14, 15] encoding a partial order between pharmacophores, also called a pharmacophore 77 

network. In this work, we leverage the pharmacophore network to quickly obtain the siblings 78 

of a given pharmacophore. 79 

For each pharmacophore, we quantify its level of significance using a quality measure function, 80 

assigning a real number to each pharmacophore. We focus on the ratio of active molecules with 81 

respect to a specific receptor, making the growth rate one of the functions used to assess the 82 

quality of our pharmacophores. Pharmacophores that score very differently than the average of 83 

neighboring pharmacophores are considered to be PADs. The definition of the neighbors is 84 

based on the notion of siblings related to the Hasse diagram (vide infra). Using the growth rate, 85 

we show experimentally that very few patterns turn out to be PADs.  86 

Methods 87 

Dataset 88 

In line with our previous paper [12], we retrieved a ChEMBL compound data set of BCR-ABL 89 

ligands [16–18] (target ChEMBL ID: CHEMBL1862, ChEMBL24 [19]). After discarding 90 

compounds with molecular weight above or equal to 800 g/mol, we obtained a data set of 1479 91 

molecules with either Ki or IC50 information. This limitation is primarily associated with the 92 

combinatorial challenge when dealing with a molecule with a significant number of 93 

pharmacophoric functions (vide infra). Of these 1479 molecules, 773 were designated active 94 

compounds (meaning their Ki or IC50 value was below or equal to 100 nM). 95 

Pharmacophores 96 

In agreement with our previous description for the generation of pharmacophores [3, 12], the 97 

pharmacophoric features correspond to generalized functionalities that are involved in 98 

favorable interactions between ligands and targets, including hydrogen-bond acceptors (|A|) 99 

and donors (|D|), negatively (|N|) and positively (|P|) charged ionizable groups, hydrophobic 100 

regions (|H|), and aromatic rings (|R|). Therefore, a pharmacophore is a fully connected graph 101 

where each vertex represents one of the specific pharmacophoric features, and the edges are 102 

labeled with the number of the fewest possible bonds between two vertices. The number of 103 

vertices, i.e. pharmacophoric features, composing a pharmacophore is called its order. 104 

A notation was fixed for the pharmacophores. We started with the vertex of the 105 

pharmacophores, e.g., |A|A| for a pharmacophore with two As with pipes as separators, and we 106 

indicated the values of the edges, e.g., |2| for a distance of 2 bonds between the As, with pipes 107 

as separators (final notation: |A|A| |2|). For a more complex case with four pharmacophoric 108 

features and six distances to integrate, for instance |A|A|H|D| |2|4|5|7|1|3|, the six distances 109 

correspond to the first one against the others (|A|A|, |A|H|, |A|D|) then, the second one against 110 

the others (|A|H|, |A|D|) and, at the end, the last one against the other (|H|D|). In the following, 111 

we omit edges information and “|” separators in figures when they are not necessary for 112 

comprehension. 113 
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We call “support” the set of molecules supporting a given topological pharmacophore, i.e., 114 

containing all the pharmacophoric features of the pharmacophore with the correct distances 115 

between them. Let 𝑝 a pharmacophore and 𝐷 the set of studied molecules. We note 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑝) 116 

the support of 𝑝 in 𝐷, i.e., its set of supporting molecules. 117 

In agreement with our previous studies [3, 12], the minimal support for the extraction of 118 

pharmacophores was fixed to 10 (minimal number of compounds), and the orders (number of 119 

pharmacophoric features) were between 1 and 7. 112 291 pharmacophores were generated with 120 

these parameters. For the GR calculation (vide infra), the cutoff for active derivatives was fixed 121 

to be less than or equal to 100 nM (773 compounds). 122 

Let 𝑝, 𝑞 be two 2D pharmacophores assimilated to graphs with labeled vertices and labeled 123 

edges and D the set of studied molecules. If 𝑝 is a subgraph of 𝑞, noted 𝑝 ⊂ 𝑞, this means that 124 

the pharmacophore 𝑝 is included in the pharmacophore 𝑞. It also means that every single 125 

molecule covered by 𝑞 is also covered by 𝑝. A molecule set covered by a pharmacophore 𝑝 is 126 

the support of a pharmacophore denoted Support(𝑝) ⊂ 𝐷. Thus, we can state that 𝑝 ⊂ 𝑞 127 

implies 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑞) ⊂ 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑝). 128 

From the subgraph partial order we can build a Hasse diagram[20] called a pharmacophore 129 

network. We note 𝐺(𝑉, 𝐸) a pharmacophore network where each vertex 𝑣 ∈ 𝑉 is a 130 

pharmacophore and given two vertices 𝑣1, 𝑣2 ∈ 𝑉, ∃(𝑣1, 𝑣2) ∈ 𝐸 (𝐸 is the set of edges between 131 

the pharmacophore network vertices) if and only if 𝑣1  ⊂ 𝑣2 and ∄𝑣3  ∈ 𝑉 such that 𝑣1 ⊂ 𝑣3 132 

and 𝑣3  ⊂ 𝑣2. Therefore, an edge links two vertices of the network 𝑣1, 𝑣2 ∈ 𝑉 if and only if the 133 

pharmacophore in 𝑣1 is a subgraph of the pharmacophore contained in 𝑣2 and there are no 134 

pharmacophores 𝑣3 in the pharmacophore network subgraph of 𝑣2 which has 𝑣1 as subgraph. 135 

We note the edge relation between the vertices of the pharmacophore network 𝑣1 <  𝑣2 and call 136 

𝑣1 a parent, which means that 𝑣2 is called a child. It also means that 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑣2) ⊂137 

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑣1). We illustrate the obtained structure in Figure 1. 138 

 139 
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Figure 1.  Structure of the pharmacophore network. Each circle is a vertex containing a 140 

pharmacophore. Only the pharmacophoric features are displayed to simplify the example and 141 

the separators “|” are removed for ease of readability. Molecules having the pharmacophore are 142 

indicated in the colored rectangles using set notation. The notation {𝑀3, … , 𝑀6} indicates that 143 

the set is composed of molecules 𝑀3, 𝑀4, 𝑀5, 𝑎𝑛𝑑 𝑀6. The molecules associated to a 144 

pharmacophore is determined by the colored area its vertex is in. Edges displays the inclusion 145 

relation between pharmacophores. The vertex containing AN is connected to the vertices 146 

containing ARN and ADN because AN is a subgraph of ARN and ADN. Since AN is associated 147 

with molecules 𝑀1 and 𝑀2, ARN and ADN must be associated to a subset of {𝑀1, 𝑀2}. In this 148 

example, these pharmacophores are associated to the molecule 𝑀2. 149 

. 150 

As we noticed that a large number of pharmacophores appear in the exact same set of molecules, 151 

we decided to group them into equivalence classes [21] (ECs) based on molecule sets. 152 

GEC, DEC, SEC  153 

The first one is the General Equivalence Class (GEC), which groups every pharmacophore 154 

covering the same set of molecules. Let 𝑝 a pharmacophore and 𝐺(𝑉, 𝐸) a pharmacophore 155 

network containing 𝑝, its general equivalence class is defined as 𝐺𝐸𝐶(𝑝, 𝐺) = {𝑣 ∈156 

𝑉 | 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑣) = 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑝)}. The formula can be transcribed as follows. Given a 157 

pharmacophore 𝑝 and a graph 𝐺, the general equivalence class of 𝑝 is the set of pharmacophores 158 

𝑣 contained in the vertices 𝑉 of 𝐺 having the same support as 𝑝, i.e. associated to the same set 159 

of molecules. In Figure 1, these equivalence classes are indicated by the colors of the areas. 160 

Meaning that pharmacophores of the first layer belong to the same general equivalence class 161 

because they all are in grey areas. 162 

The second one is the Divided Equivalence Class (DEC), which groups every pharmacophore 163 

that has the same set of molecules and the same order. Let p a pharmacophore and 𝐺(𝑉, 𝐸) a 164 

pharmacophore network containing 𝑝, we label Order(p) its number of pharmacophoric 165 

features. Then, the divided equivalence class of 𝑝 is defined as 𝐷𝐸𝐶(𝑝, 𝐺) = {𝑣 ∈166 

𝐺𝐸𝐶(𝑝, 𝐺) | 𝑂𝑟𝑑𝑒𝑟(𝑣) = 𝑂𝑟𝑑𝑒𝑟(𝑝)}. The formula can be transcribed as follows. Given a 167 

pharmacophore 𝑝 and a graph 𝐺, the divided equivalence class of 𝑝 is the set of 168 

pharmacophores contained in the general equivalence class of 𝑝 in 𝐺 having the same 169 

order, i.e., having the same number of pharmacophoric features. In Figure 1, 170 

pharmacophores in the orange area belong to the same general equivalence class but are 171 

divided in two divided equivalence class regarding the layer they belong to, i.e., regarding 172 

their orders. 173 

The last one is a specialization of GECs based on the connectivity of the pharmacophores in 174 

the pharmacophore network called the Structured Equivalence Class (SEC). To define this 175 

class, we introduce a new operator. Let 𝑝, 𝑣 two pharmacophores in the vertices of the 176 

pharmacophore network 𝐺(𝑉, 𝐸); we note 𝑝  ∼ 𝑣 if we have 𝑝 <  𝑣 or 𝑣 <  𝑝. Thus, given 177 

𝑣1, … , 𝑣𝑛 ∈ 𝑉, the expression (𝑝  ∼ 𝑣1  ∼ ⋯ ∼ 𝑣𝑛  ∼ 𝑣) indicates that a path exists in the 178 

pharmacophore network going from the vertex 𝑝 to the vertex 𝑣. A structured equivalence class 179 

groups all pharmacophores occurring in the same set of molecules having a path 180 

connecting them inside their GEC. Let 𝑝 a pharmacophore, its structured equivalence class 181 

is defined as 𝑆𝐸𝐶(𝑝, 𝐺) = {𝑣 ∈ 𝐺𝐸𝐶(𝑝, 𝐺) |  ((𝑝  ∼ 𝑣),  𝑜𝑟 (∃𝑣1, ⋯ ,   𝑣𝑛  ∈ 𝐺𝐸𝐶(𝑝, 𝐺),  (𝑝  ∼182 
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𝑣1  ∼ ⋯ ∼ 𝑣𝑛  ∼ 𝑣)))}. The formula can be transcribed as follows. Given a pharmacophore 183 

𝑝 and a graph 𝐺, the structured equivalence class of 𝑝 is the set of pharmacophores 𝑣 in 𝑉 184 

contained in the general equivalence class of 𝑝 in 𝐺 which are connected to 𝑝 by a path only 185 

visiting pharmacophores contained in the general equivalence class of 𝑝 in 𝐺. In Figure 1, the 186 

pharmacophores in the grey areas all belong to the same general equivalence class but they all 187 

belong to separated structure equivalence classes. 188 

The concepts of GEC, DEC and SEC all fall under a common concept called Equivalence 189 

Classes (EC). We can construct a pharmacophore network that minimizes redundant 190 

information from the ECs within a given pharmacophore network by taking ECs as vertices and 191 

extending the partial order as follows. Let 𝐸𝐶1, 𝐸𝐶2 be two equivalence classes; we say that 192 

𝐸𝐶1 < 𝐸𝐶2 if and only if ∃𝑒1 ∈ 𝐸𝐶1, ∃𝑒2 ∈ 𝐸𝐶2, 𝑒1 < 𝑒2. With the extended partial order, we 193 

can define a pharmacophore network of equivalence classes following the same principles as 194 

the one used to compute the ECs. Below, we introduce methods applied to the pharmacophore 195 

network. These methods can be applied to either pharmacophores as vertices or equivalence 196 

classes as vertices. We refer to it as the GEC (respectively DEC and SEC) network when the 197 

vertices of the network are general (respectively divided and structured) equivalence classes. 198 

In Figure 1, the three pharmacophores appearing only in the molecule 𝑀1 and 𝑀2 (in the blue 199 

areas) belongs to the same GEC and DEC, but do not belong to the same SEC because they are 200 

not connected within their GEC, i.e., the path linking one to another in the context graph has to 201 

go through a vertex which covers different molecules set. But if you consider pharmacophores, 202 

ADN, DNR and ARN, they belong to the same SEC (the purple area) because ADRN is 203 

associated with the same set of molecules. As we can observe, the set inclusion of molecules is 204 

maintained, which indicates that there is an equivalence between the two types of 205 

pharmacophore network. 206 

In order to study the equivalence classes, without considering every redundant pharmacophore 207 

contained, we use the notion of generating pharmacophores called generators and closed 208 

pharmacophores. Generators are pharmacophores that have no parents in their Equivalence 209 

Class (EC), which means they are the starting points of the EC. Closed pharmacophores are 210 

pharmacophores that have no children in their EC, which means they are the endpoints of their 211 

EC. In Figure 2, each circle without label is a pharmacophore (left) contained in the circle 212 

labeled 𝐸𝐶 which is an equivalence class (right). Dashed lines symbolize the inclusion relation 213 

between the pharmacophores and the equivalence class. We have one generator in blue and two 214 

closed pharmacophores in red. 215 

 216 

Figure 2. Generating pharmacophore (blue) and closed pharmacophores (red) from one EC 217 

(right). 218 

But even with the use of equivalence classes, there are still too many vertices to study in the 219 

pharmacophore network. Therefore, we use the notion of siblings in a pharmacophore network. 220 

From intuition, a sibling is a vertex having at least one common parent. For a given 221 
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pharmacophore 𝑝 and its pharmacophore network 𝐺(𝑉, 𝐸) where each vertex 𝑣 ∈ 𝑉 is a 222 

pharmacophore, the siblings set of 𝑝 is defined as 𝑆(𝑝, 𝐺) = {𝑣1  ∈ 𝑉 | ∃ 𝑣2  ∈ 𝑉,  𝑣2 <223 

 𝑝 and  𝑣2 <  𝑣1 }. We note 𝐶𝑎𝑟𝑑(𝑝, 𝐺) the cardinal of the set of siblings of 𝑝, i.e., the number 224 

of pharmacophores contained in the siblings set. 225 

 226 

Figure 3. Getting the siblings ARP, DRP, ADP, ARN, DRN, and ADN (blue) from an origin 227 

vertex labeled ADR (bold blue); its parents are 𝐴𝐷, 𝐴𝑅, 𝑎𝑛𝑑 𝐷𝑅 (red). 228 

In the pharmacophore network (see Figure 3), the siblings have at most one pharmacophoric 229 

feature which differs from the origin pharmacophore. In the condensed graph, the siblings cover 230 

the closest sets of molecules which are not included in one another because they all have 231 

molecule subsets of their common parents. 232 

Using the concept of siblings, we will identify the 𝐸𝐶s whose quality strongly deviates from 233 

those of their siblings. We interpret those 𝐸𝐶s as key graph elements, as they may explain the 234 

biological behavior of their supporting molecules. We call in the following the selected 235 

outstanding pharmacophores the Pharmacophore Activity Delta (PAD). 236 

Pharmacophore Activity Delta.  237 

Let p a pharmacophore and 𝐷 the molecule data set. We call the quality of p a real number 238 

determined by a function considering the molecules containing p noted f(p, D). In this work, 239 

the quality is the normalized growth rate of 𝑝. We say that a pharmacophore p is a PAD when 240 

its quality deviates from the mean quality of its siblings S(p, G). Let f(p, D) the quality measure’s 241 

value of the pharmacophore p in the dataset D, the sibling mean µ(S(p, G), D) is: 242 

μ(𝑆(𝑝, 𝐺), 𝐷) =
∑ 𝑓(𝑠, 𝐷)𝑠∈𝑆(𝑝,𝐺)

𝐶𝑎𝑟𝑑(𝑆(𝑝, 𝐺))
 243 

Equation 1 244 
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Then, σ(S(𝑝, 𝐺), D) is defined as the standard deviation of the siblings: 245 

σ(𝑆(𝑝, 𝐺), 𝐷) = √
∑ (𝑓(𝑠, 𝐷) − μ(𝑆(𝑝, 𝐺), 𝐷))

2
𝑠∈𝑆(𝑝)

𝐶𝑎𝑟𝑑(𝑆(𝑝, 𝐺))
 246 

Equation 2 247 

The pertinence of 𝑝 is defined as: 248 

𝑃𝑒𝑟𝑡(𝑝, 𝐺, 𝐷) =
𝑓(𝑝, 𝐷) − μ(𝑆(𝑝, 𝐺), 𝐷)

σ(𝑆(𝑝, 𝐺))
 249 

The pertinence is the deviation from the mean quality of the sibling divided by the standard 250 

deviation of the sibling. It can be transcribed as the deviation proportion of 𝑝 regarding it 251 

sibling. From this equation, a PAD is a pharmacophore which pertinence is high enough to 252 

interest the expert. Therefore, we define our PAD selector. 253 

The selector is defined as: 254 

𝑃AD(G, 𝑓, 𝐷, δ) = {𝑝 ∈ V | |𝑃𝑒𝑟𝑡(𝑝, 𝐺, 𝐷)|  ≥  δ} 255 

Equation 3 256 

Thus, a pharmacophore p is a PAD if its quality deviates at least δ standard deviations (Equation 257 

3) from the mean of the qualities of its siblings, δ being a user-supplied parameter. 258 

We chose to use the standard deviation because we want to adapt our selection to each sibling. 259 

If the siblings are different from one another, we only want to select the one that deviates the 260 

most. If the siblings are similar to each other, then even a small deviation can be interesting. 261 

GR 262 

Based on the partitioning of the initial dataset into active and inactive molecules (or the inverse), 263 

the growth rate (GR) of a given pharmacophore corresponds to the ratio between the frequencies 264 

with which it occurs in each of the two subgroups. 265 

GR =
𝐹𝑖𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎𝑐𝑡𝑖𝑣𝑒𝑠

𝐹𝑖𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑤𝑖𝑡ℎ𝑖𝑛 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑠
 266 

The main metric in this study is GRN, normalized GR with values between 0 and 1. 267 

𝐺𝑅𝑁 =
𝐺𝑅

(𝐺𝑅 + 1)
 268 

A GR value of 1 (same frequency for active and inactive compounds) corresponds to 0.5 for 269 

GRN. For the two extreme values, a GRN value of 1 indicates that a pharmacophore occurs in 270 

only active compounds, and a value of 0, in only inactive compounds. A GR value of 3, 271 

classically used in our previous studies, now corresponds to a GRN value of 0.75. 272 
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Pharmacophore (and PAD) stability 273 

Discovering interesting substructures from data always risks capturing spurious phenomena 274 

particular to the data set, instead of fundamental relationships that hold more generally. In the 275 

case of pharmacophore activity deltas, this risk is compounded by the fact that each PADs 276 

identification depends not only on its own support and quality, but also on those of its siblings 277 

(and, furthermore, on whether those siblings are present in the pharmacophore network at all). 278 

To assess the stability of discovered PADs, we therefore use a ten-fold cross-validation of the 279 

data: the data set is split into ten equally-sized subsets (folds), which are then combined to 280 

derive ten subsets, each of which containing 90% of the whole data, keeping one fold apart each 281 

time. This allows to modify data sets in a controlled manner. PADs are identified independently 282 

on each of those 10 data sets, and we assess how often PAD (re)occurs in the different result 283 

sets. 284 

Given the construction of the underlying data sets, any two such sets will share a proportion of 285 

about 1-10/90 = 0.88889 of the compounds. Simply based on this data overlap, we would 286 

expected particular pharmacophores to reoccur k times at most 0.88889k due to chance (e.g. 287 

0.5549 for k=5). As mentioned above, however, this probability will be significantly lower for 288 

PADs since not only their siblings need to reoccur but GR differences will also need to be large 289 

enough for a pharmacophore to be identified as a PAD. 290 

 291 

Results and Discussion 292 

Pharmacophores and equivalence class network: GEC, DEC, SEC  293 

Figure 4 shows the initial pharmacophore network (blue) and the DEC network (red) illustrating 294 

the distribution of vertices regarding their layers. We can see that depending on the 295 

pharmacophore order, the number of DEC vertices is strongly reduced when the order increases. 296 

This phenomenon is predominant for orders 5, 6 and 7: those orders place a high number of 297 

pharmacophores into an equivalence class when considering the DEC definition. A 298 

multiplication of pharmacophores associated with the same set of molecules is clearly observed 299 

and amplified when the number of pharmacophoric features is integrated. 300 
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 301 

Figure 4. Distributions of vertices by order: initial pharmacophore network and DEC network  302 

Figure 5 shows the pharmacophore distributions for the initial pharmacophore network (blue), 303 

the GEC network (light brown) and the SEC network (red). For each EC, we have kept the 304 

number of initial pharmacophores for a particular view of the modifications. The new 305 

distribution of pharmacophores through the notion of ECs in the order is based on the generators 306 

(smallest pharmacophore for each EC) for each EC. We can see clearly that the GECs and SECs 307 

have the same distributions and the pharmacophores of orders 5–7 are redistributed, through 308 

the generators, to orders 3 and 4. 309 

 310 

Figure 5. Distributions of pharmacophores by order for initial pharmacophore network (blue) 311 

and for GECs network (light brown) and SECs network (red) when considering the generators 312 

for the distributions. 313 
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The last representation (see Figure 6) shows the distribution of vertices in the initial 314 

pharmacophore network and in the SECs network by considering the order of the generators 315 

for each SEC. From 112 291 pharmacophores in our initial data set, we move to 15477 SECs 316 

to be assessed. 317 

 318 

Figure 6. Distributions of vertices by order of pharmacophores for initial pharmacophore 319 

network (blue) and SECs network (red) by considering the generators for the distributions and 320 

one pharmacophore for each SEC. 321 

SEC/generators/parents 322 

Of the 15477 SECs, 1745 are associated with at least two generators (vide supra for the 323 

definition). These 1745 SECs cover 1301 out of 1479 compounds. Of these 1745 SECs, 443 324 

are associated with at least 5 generators, 25 with at least 30 generators, 10 with at least 50 325 

generators and 1 with 271 generators. To give a first explanation of these results, the size of the 326 

molecules and the associated number of pharmacophoric functions were analyzed. In the initial 327 

dataset, 99 compounds have a molecular weight ≥ 500 g/mol and a number of pharmacophoric 328 

functions ≥ 20. Of these 99 compounds, 51 are associated with a SEC with at least 30 329 

generators. So, the molecular weight and the number of associated pharmacophoric functions 330 

give a first and clear explanation for the observed number of generators associated with some 331 

SECs. The SEC with 271 generators corresponds to 13 compounds, all inactive (see Figure 7 332 

for illustrations of this SEC), compounds in agreement with the previous remark. 333 
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Figure 7. All pharmacophoric functions associated with one representative compound (left). 334 

Two among the 271 generators of this SEC (center and right).  335 

Starting from the 1745 previous SECs, we analyzed the parents of these SECs. We wanted to 336 

see if some parents have particular characteristics in terms of filiations. These 1745 SECs are 337 

associated with 7517 parents. Among them, 669 have more than 20 filiations and 201 have 338 

more than 50 filiations. Among the last group, 18 parents are associated with active compounds 339 

(GRN ≥ 0.75) and 5 parents have a GRN value ≥ 0.9. The best ones (w.r.t. GRN values), |R|D|H| 340 

|1|5|9| and |R|R|H| |0|3|5|, are associated with 406 and 461 compounds, respectively (see Figure 341 

8). These pharmacophores correspond to important pharmacophores of this kinase with 342 

structural characteristics associated with the interaction with the hinge region and the key 343 

methyl group, often related to the back pocket region of the binding site (see Xing et al. [22] 344 

and our latest publication [12]). 345 

  

Figure 8. Best parents with more than 50 filiations. 346 

Among the parents, the best one for the number of filiations, |A|R| |2|, has 276 filiations. It 347 

covers 1366 compounds out of 1475, with a GRN value of 0.53. 348 

Outstanding pharmacophores: from SECs to PADs 349 

With EP mining in mind, we applied the SEC network to our pharmacophore file and retrieved 350 

the GRN values for each SEC. Table 1 shows information about the distribution of SECs as a 351 

function of the GRN values. For the selection of PADs among the SECs, the pertinence value 352 

(Equation 3, δ value) was considered first to be 1.96 (p-value of 0.05). 42 PADs (Table 1) were 353 

obtained, but with low coverage of the initial data set (22%). As a result, we have lowered the 354 

pertinence value to 1.64 (p-value of 0.1), and 377 PADs were obtained with a coverage of 81% 355 

of the initial data set (of the 277 compounds missing, 75 are actives). 356 

To analyze the PADs, we have chosen to represent them as a pharmacophore network. A 357 

similarity matrix was defined for the initial chemical data set with ECFP4 as molecular 358 

fingerprint descriptors. The Tanimoto coefficient was used as the similarity measure. The 359 
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similarity between the PADs was defined as the average similarity between the molecules 360 

associated with the PADs. The orders of the PADs are different, so it was impossible to integrate 361 

a graph edit distance in agreement with our previous studies for the similarities between the 362 

PADs [12]. To decrease the number of PADs and in line with our initial studies, we decided to 363 

summarize the initial PADs set using the MMRFS technic. The method is described in a 364 

previous publication [3]. MMRFS aims to generate a subset of pharmacophores characterized 365 

by discriminating, distinct, and representative elements of the active molecules. 135 PADs (see 366 

Table 1) out of the 377 initial PADs were selected in this case with a coverage, for the data set, 367 

of 77% (instead of 81% without MMRFS selection). Most of the PADs have order 3, 368 

corresponding to three pharmacophoric functions (see Table 1). As described in our previous 369 

publication, we focused, for the network, on the nearest neighbors of each PAD. The neighbors 370 

of each PAD were ranked in descending order based on similarity coefficient values. Using this 371 

method, the nearest two neighbors of each pharmacophore were retained (we also analyzed the 372 

nearest five and ten neighbors, but the nearest two neighbors were best for the analysis of the 373 

network). The two neighbors corresponded to the minimum number of neighbors because 374 

several of the edges within a given network can exhibit identical values for the similarity 375 

coefficient. We have chosen the Compound Spring Embedder[23] for the layout (PAD network) 376 

in Cytoscape [24]. The final PAD network allows us to get a view of our data set (see Figure 9) 377 

with active PADs in solid red and inactive PADs in solid cyan. 378 
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Table 1. Description of SECs (as a function of GRN values) and PADs (as a function of 379 

pertinence values). Information on the associated number of SECs or PADs and the molecules 380 

covered for the PADs. Pertinence is related the Equation 3.  381 

Descriptions of SECs  Number  

SECs: GRN ≥ 0.5 / GRN < 0.5  7534/7926 (SECs) 

SECs: GRN ≥ 0.75 / GRN ≤ 0.25  4285/3803 (SECs) 

SECs: GRN = 1 / GRN = 0  1084/979 (SECs) 

Description of PADs Number 

PADs: pertinence ≥ 1.96 or ≤ -1.96 ( =0.05) 20/22 (PADs) 

Molecules covered (active/inactive) 
337 (molecules) 

(187/150) 

PADs: pertinence ≥ 1,64 or ≤ -1.64 ( =0.1) 187/190 (PADs) 

Molecules covered (active/inactive) 
1202 (molecules) 

(698/504) 

PADs MMRFS with  = 0.1  
63 (0.85)/72 (0.60) (PADs 

(Recall values)) 

Molecules covered (active/inactive for above PADs MMRFS (// as separator)) 659/44 // 19/426 (molecules) 

Order 2 PADs 5/2 (PADs) 

Order 3 PADs  45/56 (PADs) 

Order 4 PADs  11/12 (PADs) 

Order 5 PADs  2/2 (PADs) 

 382 
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 383 

Figure 9. Pharmacophore Activity Delta network with active pharmacophores in red and 384 

inactive pharmacophores in cyan. The symbols are related to the order of the pharmacophores 385 

(order 2 (arrow), order 3 (triangle), order 4 (square), order 5 (hexagon))). 386 

From this PAD network, we can distinguish, at first glance, three areas for active PADs (see 387 

Figure 10). A description of the PADs (in brackets, the number of associated chemicals) for 388 

these three areas and their representative compounds are provided in Tables 2, 3 and 4. The first 389 

one, in solid green, groups 26 PADs and covers 467 molecules (442 actives) with a recall value 390 

of 0.57 (57% of all actives). The second one, in solid pink, groups 19 PADs and covers 179 391 

molecules (170 actives). The last area, in solid black, is more isolated. It groups 18 PADs, 17 392 

actives and one inactive. The 17 active PADs cover 175 molecules (160 actives). 393 
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 394 

Figure 10. PAD network with the three areas (green, pink and black) for active 395 

pharmacophores. 396 

 397 

Table 2. Description of the representative compounds (centroid, ECFP4/Tanimoto) associated 398 

to each pharmacophore (with the alignment between molecules and pharmacophores) in the 399 

green area and in brackets, the number of associated chemicals.  400 
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Table 3. Description of the representative compounds (centroid, ECFP4/Tanimoto) associated 402 

to each pharmacophore (with the alignment between molecules and pharmacophores) in the 403 

pink area and in brackets, the number of associated chemicals.  404 
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Table 4. Description of the representative compounds (centroid, ECFP4/Tanimoto) associated 406 

to each pharmacophore (with the alignment between molecules and pharmacophores) in the 407 

black area and in brackets, the number of associated chemicals.  408 
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It is impossible in this publication to describe all the PADs. We have therefore chosen to focus 410 

on some specific areas of this PAD network. The first one concerns a connection between two 411 

active areas. In fact, the green area is connected to the pink area by two PADs (similarity of 412 

0.39 between the two PADs; see Figure 10 and Figure 11 (left), solid red). 413 

 
 

Figure 11. PADs between two active groups (left, solid red) and proximities between active 414 

and inactive pharmacophores (right) corresponding to three areas (solid yellow, green, blue). 415 

One of these two PADs has 24 compounds (PAD1, |A|R|R| |14|3|8|; see Figure 12), and the other 416 

has 10 compounds (PAD2 |A|D|H| |2|23|21|; see Figure 12). They share 9 compounds (90% of 417 

the compounds associated with PAD2 are in PAD1). By combining PAD1 and PAD2, 418 

pharmacophore 1, with 5 pharmacophoric features, can be derived (see Figure 12). To analyze 419 

the possible proximity of other scaffolds to these nine compounds, we derived all the 420 

pharmacophores with 5 features from these nine compounds and extracted those associated with 421 

the maximum number of derivatives. Among the 56 pharmacophores generated, the best one 422 

(in terms of the number of compounds) is associated with 65 chemicals (pharmacophore 2, GR 423 

= 58) and is related to the ponatinib-like family [25]. 424 

  

PAD1 PAD2 
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Figure 12. PAD1 and PAD2 with two representative compounds (top). Below, pharmacophore 425 

1 corresponding to a combination of PAD1 and PAD2 (left) and pharmacophore 2 (with 426 

ponatinib) derived from the nine compounds fitting pharmacophore 1.  427 

For the other areas, we analyzed the situation where active PADs are close to inactive ones 428 

(similarity ≥ 0.3 for the PADs). This is the case for three areas (solid yellow, green, blue; see 429 

Figure 11). The first one, in solid yellow, allows us to understand the importance of one |A| 430 

function included in an aromatic group and a specific position of the |D| function for similar 431 

compounds. In fact, for PAD3 with only inactive compounds, we observed (see Figure 13) for 432 

the representative compound the inversion of the amide function compared to the representative 433 

compounds of PAD4 (with only active compounds), and moreover, one |A| function is missing 434 

compared to the representative compound of PAD4. PAD4 is the pharmacophore clearly 435 

associated with the nilotinib-like family [26]. 436 

  

PAD3 PAD4 

Figure 13. PAD3 (only inactive compounds) and PAD4 (only active compounds) showing the 437 

inversion of the amide function (between two aromatic rings) for the two representative 438 

compounds of each PAD. 439 

The solid green area is associated with pharmacophoric variations around the scaffold 440 

associated with imatinib [27]. PAD6 (see Figure 14) has three pharmacophoric functions 441 

translating the position of two polar functions (|A| and |D|) and, above all, the size of the 442 

compound with a hydrophobic group being at a distance of 19 (19 edges) from the aromatic 443 

ring bearing the |A| function. PAD5 is, on the contrary, associated with inactive derivatives. We 444 

observed with PAD5 the typical scaffold associated with imatinib without the terminal amine 445 

functions. We can notice that one compound fitting PAD5 is active with the typical methyl 446 

group for some kinase inhibitors of ABL1 related to the back pocket binding site,[12] also 447 

described previously with the best parent (see Figure 8). 448 
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PAD5 PAD6 

 

 

Figure 14. PAD5 and PAD6 with two representative compounds (top). PAD5 with the only 449 

active compound (bottom) associated to this PAD and for which the key methyl group is 450 

present.  451 

The last solid blue area is associated with the only active PAD surrounded by inactive PADs 452 

(see Figure 9). PAD7 is active, and the other ones are inactive (see Figure 15). For this chemical 453 

series, we can clearly see the importance of the |H| function in alpha position to the |A| function 454 

of the phenol group (PAD7). For PAD8, always on the phenol group, the |H| function is not in 455 

the same position (methoxy group in this case). For PAD 9, we do not have a phenol group and 456 

the |A| function is in a different position. For PAD10, a |P| function is present. So, some clear 457 

structure–activity relationships could be identified from the analysis of these PADs. 458 
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PAD7 PAD8 

  

PAD9 PAD10 

Figure 15. PAD7, PAD8, PAD9, PAD10 with representative compounds. PAD7 is active and 459 

the other ones are inactives. PAD7 and PAD8 have different positions of the hydroxy group for 460 

phenol functions. No phenol group in PAD9 compared to PAD7. PAD10 with a polar function 461 

(amine) instead of a hydrophobic function for PAD7.   462 

Cross-validation studies and stability of PADs 463 

We performed a stratified 10-fold cross-validation study (i.e. each fold contained the same 464 

proportions of active and inactive compounds) on the initial dataset (using scikit-learn/Kfold 465 

[28]). The method (extraction of pharmacophores and definitions of pharmacophore 466 

network/SECs/PADs) was applied independently to each subset. 467 

As implied by, and supporting, our earlier explanation, we extract on average 15.6% fewer 468 

pharmacophores (5.7%-31.1%). The number of SECs varies less, between 7.75% and 13.5% 469 

fewer, for an average of 10.9% fewer SECs. A total of 364 active PADs were obtained by 470 

combining the result derived from the 10 subsets, fewer than the 377 PADs derived from the 471 

full data. The method was found to be more stable than we expected. Indeed, of these active 472 

PADs, 61% are present in at least 5 subsets (as compared to the 55.49% of pharmacophores 473 

one would expect to reoccur 5 times) and 26 PADs are present in the results of all the subsets. 474 

Of these 26 active PADs, |D|A|R| |2|3|2|, with 470 compounds, is associated with the highest 475 

number of compounds. Inactive PADs are less stable, with 40% present in at least 5 folds, and 476 

14 PADs are present in all the folds. 477 

Table 5. Number of pharmacophores (Phar.), SEC and PADs for each fold. Cumulative 478 

presence of the PADs in the folds. 479 
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 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

Phar. 98053 92727 77346 92742 105875 95596 108556 90708 91588 93638 

SEC 14257 14278 13836 13717 14058 13529 13378 13415 13547 13791 

PADs 
153/ 

199 

168/ 

173 

174/ 

144 

152/ 

122 

130/ 

126 

117/ 

149 

126/ 

148 

130/ 

208 

127/ 

180 

115/ 

169 

Presence of the PADs in the folds (cumulative: at least x folds) 

x fold 10 9 8 7 6 5 4 3 2 1 

Pertinence 

≥ 1.64 
26 70 111 146 192 225 261 304 349 364 

Pertinence 

≤ -1.64 
14 33 60 101 139 194 221 268 355 481 

Conclusions 480 

In an effort to develop a tool that can rapidly provide information from a dataset of molecules 481 

regarding active or inactive compound characteristics, we conducted structural elucidation 482 

using a fully annotated dataset of molecules extracted from the ChEMBL database. The various 483 

steps involved in this workflow are summarized in Figure 16. The extraction of 484 

pharmacophores with Norns is the most time-consuming process, taking several minutes with 485 

our configuration. We processed 1479 molecules to generate topological pharmacophores 486 

containing 1 to 7 motifs, with the support of at least 10 molecules. As part of our objective to 487 

involve a human expert in pharmacophore elucidation, we established a specific method to 488 

identify outstanding pharmacophores known as PADs. 489 

The extraction of PADs is initially linked to defining the 15477 SECs from the initial 112291 490 

pharmacophores. Subsequently, calculations of GRN were performed for each SEC. A threshold 491 

for the pertinence values associated with each SEC led to the extraction of 377 PADs. In the 492 

end, a PAD network was constructed using Cytoscape starting from a representative set of 135 493 

PADs (MMRFS). This network incorporates the similarity between the PADs for link definition 494 

(the 2NNs of each PAD). 495 

The interestingness of this reduced set of 135 PADs is based on the diversity of information it 496 

provided, equally shared between active and inactive compounds. Cross-validation studies can 497 

be also a basis for the selection of interesting PADs. The proximity between these PADs allows 498 

us to explain some key SARs with the four illustrations in this publication. 499 
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 500 

Figure 16. Workflow associated to the different steps of our process from the extraction of 501 

pharmacophores to the representation of a network associated to the PADs. 502 

 503 
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SAR: Structure-Activity Relationships. 513 
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