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New  pharmacophore  fingerprints  and  Weight-Matrix
Learning for virtual screening. Application to Bcr-Abl data.
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Abstract : We propose here to analyze the potential of a new type of pharmacophoric descriptors coupled with an original
feature transformation technique, called Weight-Matrix Learning (WML, Feed Forward Neural Network). The application
concerns virtual  screening on a tyrosine kinase named BCR-ABL. Firstly,  the compounds were described using three
different families of descriptors: our new pharmacophoric descriptors and two radial-based fingerprints, ECFP4 and FCFP4.
Then, each of these three original molecular depictions were transformed by using either an unsupervised WML method or
a supervised one. Finally, using these transformed representations,  K-Means clustering algorithm has been applied to
partition  the  considered  molecules.  Combining  our  pharmacophoric  descriptors  to  supervised  Weight-Matrix  Learning
(SWMLR) leads to clearly superior results in terms of several quality measures.
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1. Introduction

Recently, a new way to characterize a chemical data
set  has  been  defined  based  on  Emerging
Pharmacophores  (EPs)[1].  An  EP  is  a  pharmacophore
whose  occurrence  frequency  inside  one part  of  a  data
set is significantly greater than outside of it.

Each  EP  is  associated  to  a  growth  rate  value
corresponding  to  the  ratio  of  the  frequencies  between
two  categories  associated  to  compounds  (active  vs
inactive, for example). The first pharmacophore networks
were  constructed  from  representative  EPs  (called
MMRFS) and the resulting pharmacophore spaces were
based on similarities (graph edit distances) between the
EPs [2]. 

Until  now,  we  had  never  considered  the  Frequent
Pharmacophores  (FrPs)  initially  generated  from  a
chemical  data set,  i.e before the calculation of  EPs, as
potential  new  descriptors.  Thus,  the  aim  of  this
publication  is  to  take  all  the  FrPs  associated  with  a
minimum  number  of  compounds  and  to  explore  the
structure-activity  relationships  towards  a  biological
receptor  starting  from  these  descriptors.  As  a  case
study,  we  consider  the  same  data  set previously
extracted  from  the  ChEMBL  database [2].  This  data  set
relates  to  a  tyrosine  kinase  named  BCR-ABL,  an
oncogene involved in chronic myeloid leukemia. 

To  process  this  data,  we  rely  on  clustering
techniques. Clustering is a machine learning method that
groups objects considering how similar their descriptions
are.  Members  of  the  same  cluster  must  be  similar  to
each other while being different from members of  other
clusters. Clustering algorithms associated with chemical
data and  chemoinformatics  have  been  described  in

several  publications [3–7].  The  first  step  is  to  define  a
similarity  matrix  between  the  compounds.  The  latter
matrix  is  usually  computed  from chemical  fingerprints[7]

such  as  circular-based  fingerprints  which  consider  the
entire  structure  without  pre-definition  of  fragments [8].  A
circular-based  fingerprint  iteratively  encodes  features
that  represent  each  heavy  atom  in  larger  and  larger
structural neighborhoods, up to a given diameter. In this
study,  we  chose  to  consider  the  global  descriptors
associated  to  the frequent  pharmacophores (FrPs).  For
comparison  purposes,  we also used two circular-based
fingerprints:  ECFP4 [9] for  Extended  Connectivity
Fingerprints  and  FCFP4  for  Functional  Connectivity
Fingerprints[8]. 
Feature  transformations,  like  principal  component
analysis,  are  well-known  techniques  to  optimize  a
machine  learning  process [10].  Here,  besides considering
the original data, the potential of two recent approaches
is analyzed, approaches linked to a feed-forward neural
network.  The first  one  is  called Weight-Matrix  Learning
(named  WML) and  is  based  on  unsupervised  learning
metrics,  identified  as  an  off-center  technique [11]. The
underlying idea is to obtain a chemical representation in
a new feature space so that ligands with similarity above
a  threshold  are  closer to  each  other  and  ligands  with
similarity  below  the  same  threshold  are  farther  apart.
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Based  on  WML,  we  propose  a  supervised  way  to
transform the  data.  This  second  feature  transformation
method  is  called  SWML  for  Supervised  Weight-
Matrix[11,12].  The main idea is to use the prior knowledge
on the ligands (active  vs inactive) by optimizing a given
objective function, in our case categorical cross entropy.
The learning process leads to a learned matrix such that
the ligands from the same class are close to each other
while those from different classes are moved away from
each other. 

The importance played by each feature in the previously
discussed  process  is  computed. The  purpose  of  feature
importance is to explain machine learning models and, in
our case, to give an interpretation of the final clustering
by  providing  the  main  descriptors  involved  in
characterizing  clusters.  Several  methods  exist  in  this
field  such  as  Local  Interpretable  Model-agnostic
Explanations  (LIME) [13],  Deep  Learning  Important
FeaTures  (DeepLIFT) [14],  and  SHapley  Additive
exPlanations (SHAP)[15]. The cited methods all belong to
the  post  hoc  interpretability [16] which  means  that  they
extract  information from already learned models:  it  is  a
kind of `explanation-by-justification'. Recently, SHAP has
been  used  to  interpret  relevant  chemical  features,  and
proved its effectiveness in the field of drug discovery [17–

20].  Shapley  values  [21] were  introduced  in  the  50s  to
measure  the  contributions  of  individual  players  to  a
collaborative  game.  This  concept  has  been  applied  to
feature contributions [15] by considering a team’s success
as  an  outcome  (prediction),  and  each  player’s
contribution as the feature importance. The idea behind
the method is to create a parallel model g which aims to
explain the predictions of a model f.

In summary, one compared three sets of descriptors
(FrP,  ECFP4,  FCFP4)  through  their  own  capability  to
distinguish  between  active  and  inactive  BCR  ABL
inhibitors.  The comparison was done by analyzing both
the performances obtained from the original data and the
performances  obtained  from  the  data  resulting  of  the
application  of  a  feature  weight  transformation.  In
addition,  the  predictive  quality  of  the  different  models
was analyzed by considering decoys linked to BCR-ABL
ligands.  The  obtained  results  show  that  the  SWML
transformation applied to FrP is effective. Furthermore, a
feature  analysis  based  on  the  SHAP  method  was
performed on the representative pharmacophores named
MMRFS  [14]  for  our  chemical  data set  to  identify  key
pharmacophores.

This  paper  is  organized  as  follows  :  Section  2
introduces  the  materials  and  methods  used  to  achieve
our  objective  with  a  description  of  our  methods  of
treatment  of  the  chemical  descriptors,  Section  3
presents  and discusses the main results  and Section 4
concludes this work and draws up some perspectives.

2. Materials and Methods 

2.1. Data set. 

The BCR-ABL  data set used in this work includes 1479
compounds described in our earlier publication [2]. Briefly,
this  dataset    data  set    was  collected  from ChEMBL with
the  following  restrictions:  (i)  only  K i and  IC50 values
expressed in nM units from biochemical assays reported
in  CHEMBL_24  (CHEMBL1862  :  Target  CHEMBL  ID)
were  accepted  as  bioactivity  data;  (ii)  measurements
containing symbols such as “>” or “<” were not included
unless they agreed with  the threshold value (e.g.,  “<10
nM” would be retained as a means to identify an active
molecule in the case of a 100 nM activity threshold); and
(iii)  if  more  than  one  bioactivity  measurement  was
provided for the same molecule, we included the lowest
Ki or  the  lowest  IC50 value  if  no  Ki was  available.
Duplicates were filtered and additional adjustments were
performed  (e.g.,  compounds  with  molecular  weight
greater  than  or  equal  to  800  g/mol  are  eliminated,
removal  of  salts,  standardization  of  chemical  functions,
addition  of  hydrogens  at  the  heteroatoms,  and
conversion  to  a  two-dimensional  [2D]  spatial  data  file
[SDF]  format)  using  Pipeline  Pilot  (BIOVIA,  San Diego,
CA,  USA)  components.  The  molecules  exhibiting  K i or
IC50 values  less  than  or  equal  to  100  nM  were
considered to be active compounds (n = 773); molecules
with Ki or IC50 values greater than or equal  to 1000 nM
were  considered  to  be  inactive  (n  =  706).  We  created
this  substantial  gap  between  active  versus inactive
molecules  to  maintain  clear  differentiation  between  the
two groups. 

In  order  to  test  the  learning  process,  decoys  were
used.  The  decoys  are  generated  from  the  original
ligands and are all considered as inactive molecules. In
our case we used the 10885 decoys associated to ABL1
data on DUD-E[22].

2.2. Molecular features

2.2.1. Pharmacophores. 

The extraction of the frequent pharmacophores (FrP)
is  described  in  our  previous  publications [1,2].
Pharmacophore  features  correspond  to  generalized
functionalities that are involved in favourable interactions
between  ligands  and  targets,  including  hydrogen-bond
acceptors  (A)  and  donors  (D),  negatively  (N)  and
positively  (P)  charged  ionizable  groups,  hydrophobic
regions (H), and aromatic rings (R).  Figure 1 represents
the transformation of  a  molecule from its  2D molecular
structure  into  a  pharmacophore  graph.  When  a
pharmacophore  graph is  included into  a  molecule,  one
say  that  it  occurs  into  the  molecule.  A  FrP  is  a
pharmacophore  graph whose number of  occurrences in
the  data  set exceeds  a  given  threshold.  The  minimal
support  for  FrP  was  set  to  10  in  this  study:  a
pharmacophore  graph  has  to  occur  in  at  least  10
molecules  to  be considered  as a FrP.  We identified all
FrPs with three to seven pharmacophoric features. With
this setting, 111976 FrPs were generated.
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Figure 1. Transformation of a molecule (a) into its
pharmacophore graph (b). (c) provides an example of a

graph which occurs in the pharmacophore graph  of (b) ..
The corresponding fit of the three-point FrP in the molecule

(d). The representative symbol for each pharmacophore
feature is indicated on the right.

2.2.2. ECFP4 and FCFP4.

ECFP4 and FCFP4 fragments were extracted from a
Pipeline  Pilot  protocol.  From  our  data  set,  7237  and
7100  descriptors  were  generated  with  ECFP4  and
FCFP4, respectively. 

2.2.3. Equivalence Classes (EC) for  pharmacophores  and
fingerprints. 

The  goal  of  this  pre-processing  step  is  to  eliminate
redundancy  and  to  retain  only  relevant  data  based  on
the  standard  Equivalence  Classes  (EC)  techniques [23].
To this end, equivalent descriptors must be merged into
a  representative  one.  Herein,  two  descriptors  are
equivalent  if  they  occur  in  the  exact  same  set  of
molecules.  With  FrP,  this method allowed us to reduce
86%  of  descriptors  without  losing  any  statistical
information  (from  111976  FrP  to  15046  ECs).  For
molecular  fingerprints,  the reduction is  lower  with  3283
ECs for ECFP4 (45% of initial ECFP4) and 3269 ECs for
FCFP4 (46% of initial FCFP4).

It  should  be  emphasized  that,  in  the  rest  of  the
article,  all  the  operations  will  be  carried  out  on  the
descriptions  obtained after  the  latter  EC pruning  rather
than  on  the  initially  computed  chemical  features
(pharmacophores  or  fragments).  In  summary,  from any
of  the  three  initial  descriptions,  exactly  one  descriptor
per EC will be considered as a feature 

2.3. WML and SWML feature transformation

All  methods  discussed  in  this  subsection  were
implemented in Python. 

2.3.1. WML

WML is a feature transformation method based on a
feed-forward  neural  network  (FFNN [24]).  WML is  an  off-
center technique: when its center is set to a similarity of
0.5,  WML  seeks  for  a  transformation  that  brings  two
elements closer as soon as their  similarity exceeds 0.5
while separating them otherwise. Such a transformation
helps to reduce the difficulty of  the learning task in the
absence of labeled data. By this method, we aim to learn
a  matrix  that  transforms  the  chemical  features  of  the

original  space  into  a  new  feature  space.  In  the  new
feature  space,  ligands  with  a  similarity  larger  than  0.5
will be closer to each other and ligands with a similarity
smaller than 0.5 will be farther away. 

Figure 2. Network representation for WML[11]

The  network  structure  of  Figure  2 gives  an
explanation  for  WML.  WML  seeks  for  a  linear
transformation denoted as W. As the objective function
called  E(W)  quantifies  a  loss,  the  latter  must  be
minimized. For more information, see the main reference
of Dasen et al. [11].

Given  two  ligands  p  and  q  whose  initial
representations  are denoted x⃗ p and  x⃗q,  the calculation
of their similarity is performed as in Equation 1: 

ρpq
(W )=

1

1+β ⋅d pq
(W )

Equation 1

Where ρpq
(W )

is the similarity between the two ligands after

the  transformation  W.  d pq
(W )

is  a  Mahalanobis  distance[25]

measure defined by Equation 2: 

d pq
(W )

= ( x⃗ p− x⃗q)
T (W TW ) ( x⃗ p−x⃗q )

Equation 2
This  distance  corresponds  to  the  squared  euclidean

distance when W=I , where I  is an identity matrix.

β  is a positive number calculated from  Equation 3:

2
N (N−1 )

∑
q> p

ρpq
( I )
=0.5

Equation 3

N  is the number of ligands in the  data set,  ρpq
(I )

 is the

value  of  ρpq
(w )

 when  W=I ,  i.e,  the  similarity  before  any

transformation. The role of the parameter β  is to balance the
data distribution in order to have an average similarity of the
sample around 0.5 (see Figure 3 for FrP).
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Figure 3. The similarity distribution with WML and FrP

Once the similarity matrix is calculated, the uncertainty of
this  similarity  matrix  is  reduced  by  minimizing  the  loss
function E (W ) in Equation 4: 

E (W )=
1

N (N −1 )
∑
q< p

[ ρpq(W ) (1− ρ pq
( I ) )+ ρpq

(I ) (1− ρpq
(W )) ]

Equation 4

2.3.2. SWML

SWML uses a supervised learning metrics also based on
an  FFNN.  Here,  the  search  for  the  best feature
transformation  is  a  supervised  method  that  relies  on  the
activity  of  ligands.  The main idea is  to  use  the activity  of
ligands for minimizing the categorical crossentropy (CCE), a
loss function defined by  Equation 5.  In the latter, N is the
number of ligands, C is the set of predefined labels (active

and inactive),  y i
k
is valued at 1 when the training example i

belongs  to  class  k,  otherwise  y i
k is  valued  at  0.

model (x i ,k ) represents the predicted class (the output of

the model). The goal of SWML is to separate active ligands
from inactive ones as much as possible,  by seeking for a
model that minimizes CCE.

CCE=−
1
N∑

i=1

N

∑
k=1

C

y i
k log (model (x i ,k ))

Equation 5

The architecture of the SWML, as illustrated in Figure 5,
is composed of one input layer and one hidden layer with M-
neurons  for  the  input  layer  and  c-neurons  for  the  output
layer. The number of neurons corresponds to the dimension
(number of properties) of the used representation, where the
number of output neurons c corresponds to the number of
classes (in our case two activity classes).

Figure 4. Network representation for SWML.

2.3.3. Feed forward Neural Network (FNN)

WML  and  SWML,  use  a  FFNN  implemented  with
TensorFlow[26] and Keras[27].

Both  feature  transformations  seeks  for  a
transformation  W that  converts  the  original  space of  N
ligands  described  by  M  features  into  a  new  space.
Subsequently,  the  learned  weights  and  biases  used  in
the training phase of the FFNN are used to perform the
transformation  of  the  initial  feature  representation (see
Equation  6 where  X ' is  the  transformed  data,  X  the
original  data,  W  the trained matrix of  weights  and  b is
the vector of bias).

X '=X .W+b 

Equation 6
This  transformation  could  increase,  preserve  or

decrease  the  number  of  descriptors.  We  have  chosen
here  to consider  only  the transformations that  maintain
the initial number of descriptors.

In  t  T  he  FFNN,  an  epoch  denominates  one  forward
pass and one backward pass of all the training examples
of  the  learning  process;  the  learning  rate  is  a  positive
value, in the range between 0.0 and 1.0, controlling the
convergence of the model by optimizing a loss function. 

In this study the learning rate was set to 0.0005 and
the  maximum  number  of  epochs  was  set  to  100.  To
choose the optimal number of  epochs we opted for the
use  of  early  stopping  and  the  model  check  point
techniques. As a stochastic gradient descent method, we
choose  Adam optimization [28],  which  are  well  suited  for
problems using large data, to reach the optimal value of
the  loss  function.  The  sigmoid [29] was  selected  as  the
activation  function,  and  the  batch  size  was  set  to  256.
The loss functions are described previously. 

As  SWML  is a  supervised  method,  overfitting  is
possible.  We  have  therefore  successively  applied  two
particular  methods.  Dropout  [30,31] is  a  technique  that
prevents overfitting by temporarily removing neurons (in
input  or hidden layers)  in  a  neural  network based on a
rate p,  .   In Figure 5, as the rate is set to 0.5, 50 % of the
neurons are removed.

The choice of the dropped neurons is made randomly
for each training step.
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Figure  5 The  neural  network  (a)  before  applying  the
dropout and (b) after applying the dropout with a rate p = 0.5.

The  L2  regularization [32,33] is  another  method  to
overcome  overfitting.  The  idea  of  L2  is  to  add  a
regularization term to the loss function so that Los stotal,
defined in Equation 7, is minimized in the model training
phase instead of the Los smodel.

Los stotal=Los smodel+λLos sL2
Equation 7

Los smodel. is the chosen loss function to train the model,

λ∈ [ 0,1 ] is  a  regularization  parameter  that  controls  the

trade-off  between  Los smodel and  Los sL2,  while  the

Los sL2,  as defined in  Equation 8,  represents the sum of

squares  of  all  weights  wi in  the  model  with  M  for  the

number of features. 

Los sL2=∑
i=1

M

wi
2

Equation 8
In our case, we use two dropout layers combined to

the L2 regularization, an input dropout of 20% rate and a
second dropout of 50% rate after the hidden layer  [29].

The  application  of  both  methods  leads to  a  new
symbol  that  denotes  SWML  followed  by  the  two
regularizations: SWMLR.

2.4. Clustering with K-means

K-means  [34] is  one  of  the  most  used  clustering
algorithms. The strength of K-means lies in its simplicity and
ability to group large  data sets.  Let  D be the learning set.
Each cluster  is  a  subset  of  D represented  by  a  centroid,
initialized by  a  randomly  chosen  point  of  the  data  set. In
order to fill the clusters, each element x of  D is assigned to

the nearest  centroid  ck,  belonging to clusterk as follows in

Equation 9 : 

x∈c lusterk⟺dist (x , ck )=argmi n1≤ j≤ K dist (x , c j )
Equation 9

After each  iteration,  the  centroids  are  recalculated
and updated taking into account each new assignment.

We emphasize  that  we use K-means because of  its
simplicity  and  its  wide  use  [35],  but  any  clustering
algorithm  could  be  used  instead  of  K-means. The
Euclidean  distances  was  chosen  for  the  original  and
transformed data[36]. K-means and its evaluation metrics
were  implemented  by  using  the  Scikit-learn  Python
library[34].

2.4.1. Predictive Clustering

For predictive clustering of a new ligand after an initial
clustering with K-means, the ligand is assigned to the cluster
that  minimizes  the  similarity  between  its  centroid  and the
ligand. By adding the points in each iteration, the centroids
are recalculated and updated taking into account each new
point.  The  presented  K-means  process  is  applied  on  the
training data after its transformation as presented in Equation
10. 

T ( x trai ni)∈cluste r trai nk⟺dist (T ( xtrai ni ) , ctraink )=argmin1≤ j≤ K dist (T (x trai ni) ,c trai n j)
Equation 10

Where  x trai ni∈Dtrain , D train is the training partition of

data  D,  T ( x trai ni) is  the  transformation  of  x trai ni by  the

model T , c trai nk is the centroid belonging to cluste r train k. 
In order to predict the membership of a new ligand to an

already constructed clusters,  this ligand is assigned to the
cluster  which  minimizes the similarity  between its  centroid
and this point[37] as defined in Equation 11.

T ( x test i)∈cluste r trai nk⟺dist (T ( xtes t i ) , ctrai nk )=argmin1≤ j≤ K dist (T (x tes t i) ,c trai n j)
Equation 11

Where x tes t i∈Dtest , D test is the training partition of data

D,  T ( x test i) is the transformation of  x tes t i by the model  T ,

c trai nk is the centroid belonging to cluste r train k. 
We  emphasize  that  predictive  clustering  is  used  to

cluster test folds in the cross validation process and also
to cluster decoys.

2.4.2. Evaluation metrics

In addition to a classical confusion matrix [38], two 
evaluation metrics, Normalized mutual information [39] 
(NMI) and Silhouette [40], are computed for each partition
considered during the clustering process. NMI is a 
quality measure that compares the resulting clusters with
a given classification, the latter being considered as a 
ground truth. The results vary between 0 (no mutual 
information) and 1 (perfect correlation). Silhouette is a 
function that averages intra-cluster distances and inter-
clusters distances. The best value is 1 and the worst is -
1. Values close to 0 indicate that the clusters overlap. 
Negative values usually indicate that samples was 
assigned to the wrong cluster.

2.5. Feature importance: SHAP[15]

The  purpose  of  feature  importance  is  to  explain
machine learning models. As defined in Equation 12 the
sum of the contributions of all the features must be equal
to the prediction (output) of the model f(x).

f (x )=g (x ' )=∅0+∑
i=1

M

∅i x i
'

Equation 12
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Where M is the number of input features,  x’∈{0,1}M is a
binary  vector  indicating  the  presence  or  absence  of  a
feature, x’ is called the interpretable representation of  x.
The  base  value  ∅0 represents  the  mean  value  of  the
predictions  of  the  model  f.  In  the  SHAP algorithm,  the
contribution of a feature i,  denoted   ∅i, is a real  value,
commonly  used  to  identify  how  much  a  feature  i
influenced a model’s prediction. 

The  articles   of  Lundberg  and  Lee [15] provides  a
precise defi  e  nition and a detailled   co  u  mputation of ∅i. 

.

SHAP  values  are  calculated  by  using  the  SHAP,
Python library.  [15][43]

3. Results and Discussion

3.1. Descriptors and clustering

To  have  a  first  view  of  the  evolution  of  the  initial
dataset     data  set    and  the  similarities  between
compounds,  Figure  6 shows  the  Multidimensional
Scaling[44] projection  of  the  three  situations  (Original,
WML,  SWMLR)  and  for  the  three  descriptors  (FrP,
ECFP4, FCFP4).

Figure 6. MDS projections for the three descriptors (FrP
(up), ECFP4 (middle), FCFP4 (down)). Left : Original
representation. Middle: WML. Right: SWMLR. Active

compounds are in red, inactive in green.

SWMLR leads to a more compact representation and a
clearer  separation  between the  two classes.  The  Table  1
records the results of full trained data based on original data,
WML and SWMLR transformations. SWMLR leads to the best
clustering whatever the descriptors. FrP outperforms ECFP4
and FCFP4 and the best configurations were obtained from
k=2  to  5  (NMI  and  misclassified  compounds)  with  an
optimum for k = 3 (see Table 1, orange cells). The stability of
SWMLR was analyzed by a 5-fold cross validation technique
by splitting the data into 80 % of training folds and 20 % of

testing folds (see Table 2, k = 3).  Misclassified compounds
represent 12% in this case, compared to 6,5% for the full
data.  A comparison of  SWML and SWMLR has only  been
shown  for  k=3  in  Table  1.  SWML  performs  better  for
misclassified  compounds  but  not  for  silhouette.  Also,  an
overfitting  is  clearly  possible  with  SWML.  Along  with  this
result,  this  phenomenon  was  analyzed  on  decoys  (see
below). In the end, we chose to keep SWMLR/FrP with k=3
(K-means) in the following studies.

3.2. Composition of the clusters

The  composition  of  the  clusters  (SWMLR/FrP  with
k=3)  is  summarized  in  Table  3.  Cluster0  is  associated
with  inactive compounds (91% inactive).  Cluster1 is  an
active  cluster  and  only  the  compound  1 (trained  data,
FRP,  ECFP4,  FCFP4)  is  inactive  in  this  subset  (IC50 =
1000 nM).  The closest  compound of  1 in this cluster is
the  compound  2 with  an  IC50 of  62  nM (see  Figure  7).
This  activity  cliff  has  already  been  described  and
discussed in our previous publication.[1] 

Figure 7. Inactive vs active compound in cluster1.
Cluster2  is  an  active  cluster  (90%  active)  with  31

compounds  misclassified.  Compound  3 is  a  typical
example of these misclassifications with an IC50 of 11000
nM  compared  to  a  close  derivative  in  this  cluster,  the
compound 4, with an IC50 of 70 nM (see Figure 8). 

Figure 8. Inactive vs active compound in cluster2

Representative compounds of the two active clusters
were  analyzed  with  Maximum  dissimilarity  clustering
(clusters with members similarity inferior or equal to 0.45
(distance  Tanimoto,  ECFP4)).  We got  43  clusters  (see
Figure 9, for 25 cluster centers with a minimum number
of  compounds  of  5  in  each cluster  among  the  43
clusters) for the cluster1 and 95 clusters for cluster2 with
a lower number of compounds compared to cluster1 (see
Figure  10,  for  22  cluster  centers  with  a  minimum
numbers of  compounds of  5 in each cluster among the
95  clusters).  This  reflects  the  greater  diversity  of
compounds for cluster2 compared to cluster1. 
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Table 1. Quality data for original and feature transformation data in function of the type of descriptors.
k

clusters data
FrP ECFP4 FCFP4

NMI Silhouette misclassified NMI Silhouette misclassified NMI Silhouette misclassified

k=2
Original 0.280 0.035 449 0.328 0.081 394 0.328 0.082 379

WML 0.318 0.398 393 0.315 0.338 396 0.320 0.351 396

SWMLR 0.558 0.553 177 0.450 0.708 261 0.421 0.708 290

k=3
Original 0.297 0.055 395 0.292 0.102 339 0.271 0.097 394

WML 0.253 0.383 394 0.263 0.355 374 0.277 0.345 341

SWML 0.678 0.349 38 0.623 0.294 76 0.589 0.281 108

SWMLR 0.546 0.438 96 0.440 0.603 171 0.430 0.599 179

k=4
Original 0.252 0.085 387 0.252 0.113 338 0.256 0.112 337

WML 0.257 0.411 331 0.222 0.355 369 0.236 0.344 353

SWMLR 0.516 0.450 108 0.414 0.489 195 0.392 0.529 173

k=5
Original 0.257 0.081 395 0.270 0.119 329 0.270 0.119 318

WML 0.229 0.407 331 0.210 0.353 364 0.207 0.359 359

SWMLR 0.497 0.465 110 0.379 0.456 191 0.362 0.475 189

k=6
Original 0.256 0.087 381 0.238 0.126 319 0.236 0.123 317

WML 0.225 0.384 290 0.206 0.367 364 0.212 0.372 348

SWMLR 0.454 0.364 117 0.342 0.389 178 0.345 0.468 185

k=7
Original 0.224 0.091 357 0.240 0.138 320 0.226 0.087 329

WML 0.221 0.401 291 0.196 0.367 327 0.202 0.393 350

SWMLR 0.397 0.344 128 0.325 0.374 179 0.312 0.413 192

k=8
Original 0.213 0.107 372 0.221 0.091 283 0.213 0.086 314

WML 0.211 0.434 293 0.190 0.331 324   0.213 0.399 331

SWMLR 0.394 0.281 129 0.318 0.351 172   0.314 0.385 177

k=9
Original 0.291 0.004 318 0.221 0.091 249  0.214 0.100 281

WML 0.198 0.408 293 0.189 0.354 323   0.170 0.346 331

SWMLR 0.370 0.305 137 0.318 0.352 179 0.305 0.378 177

Table 2. Crossvalidation data on SWMLR.

k clusters Metrics fold0 fold1 fold2 fold3 fold4
Average
(folds)

NMI 0.438  0.470 0.459 0.440 0.387 0.439

k=3 Silhouette 0.516 0.369 0.436 0.516 0.554 0.478

Misclassified 43 28 29 42 46 38

Table 3. Repartition of the compounds into the three clusters (k = 3) for the initial data set and for the decoys with FRP,
ECFP4 and FCFP4
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ligands Initial data set Decoys

cluster0 cluster1 cluster2 cluster0 cluster1 cluster2

FRP Inactive 674 1 31 10864 0 20

Active 64 426 283 0 0 0

ECFP4 Inactive 661 1 44 698 4031 6156

Active 132 421 220 0 0 0

FCFP4 Inactive 663 1 42 214 7760 2911

Active 125 424 224 0 0 0

Figure 9. View of representative compounds of cluster1 (5 compounds by cluster minimum).

Figure 10. View of representative compounds of cluster2 (5 compounds by cluster minimum)
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The  Minimum  (MinDistance),  maximum
(MaxDistance)  and  average  distances  (AvgDistance)
for all pairs of molecules in the active cluster (ECFP4,
Tanimoto  Distance)  were  calculated  (see  Table  4).
With  an  average  distance  of  0.65,  the  chemical
diversity of cluster1 is lower than cluster2.

Table 4. 
MinDistance MaxDistance AvgDistance

Cluster 1 0.02 0.92 0.65

Cluster2 0.02 0.96 0.81

3.3. Feature importance

The  definition  of  the  main  pharmacophores
associated  with  the  three  clusters  was  explored  with
the notion of feature importance  via SHAP. To clarify
the  interpretation  of  these  results,  we  added  a  label
named Growth Rate (GR) to  FrP,  label  in  agreement
with  our  previous  studies [1,2].  The  GR  of  a
pharmacophore  corresponds  to  the  ratio  between  its
frequency  of  fit  within  the  active  molecules  and  its
frequency of fit within the inactive molecules. From the
15046  FrP,  the  extraction  of  the  main  features
(pharmacophores) with SHAP is difficult  (see  Erreur :
source de la référence non trouvée with  M=15046)
but  feasible.  We  obtained  a  pharmacophore  ranking
for each cluster but the first  (among the 15046 FrPs)
seems  insignificant  (differentiation  between  the
clusters) considering the average GR values for each
cluster  and  the  small  extensions  (number  of
compounds)  associated with each pharmacophore. To
decrease  the  number  of  pharmacophores  for  the
SHAP  analysis  and  also  in  agreement  with  our
previous  studies,  we  calculated  representative
pharmacophores named MMRFS [2] with three to seven
pharmacophoric  features  for  our  chemical  data  set.
For  this  definition,  we have  considered  both  classes
(actives vs inactives and the inverse [2]) because GR is
the  main  basis  for  the  selection  of  MMRFS
pharmacophores  (initial  classification  of
pharmacophores in function of the GR values and the
extension[1]).  These  processes  lead  to  312  MMRFS
pharmacophores.  To  verify  the  performance  of  these
new 312 descriptors, SWMLR was applied followed by
a  clustering  with  k  =  3,  as  for  FrP.  The  results  are
close to SWMLR/FrP (see Table 5).

The  first  three  MMRFS  pharmacophores  selected
with  SHAP,  for  each  cluster,  have  an  active  recall
value  (the part  of  active  molecules  (IC50 <= 100 nM)
which  are  predicted  as  active)  of  0.46  for  cluster0,
0.60 for cluster1 and 0.94 for cluster2. The same three
MMRFS  pharmacophores,  reversing  the  notion  of
active compounds,  have an inactive  recall  value (the
part of inactive molecules (IC50 >= 1000 nM) which are
predicted as inactive)  of  0.75 for cluster0,  0.0057 for
cluster1  and  0.56  for  cluster2.  These  results  help  to
understand the differences between the three clusters
(see  Table  6)  and  their  specific  classes  (active  or
inactive).  If  we  consider  the  first  50  MMRFS
pharmacophores,  we  observe  the  same  trend  by
calculating the average values of the normalized GR (

GRNor).
GRN∨¿=(GR / (GR+1 ) ) ¿

Indeed,  GRNor is  0.34  for  cluster0,  0.83  for
cluster1  and  0.63  for  cluster2.  Considering  this  last
data  and  previous  results  for  prediction,  cluster1  is
associated  with  pharmacophores  of  higher  orders,
thus  leads  to  larger  pharmacophoric/structural
constraints than cluster2. 

For  the  MMRFS  pharmacophores  selected  with
SHAP, number one (SHAP1) is the same MMRFS for
cluster0 and cluster2. It covers 745 molecules (56% of
the inactive molecules) and it is often associated with
an  aromatic  group  linked  to  an  amide  or  amidine
function.  For  cluster1,  SHAP1  is  a  pharmacophore
close to the main pharmacophore of cluster C1 [2] and
pharmacophore  P1[1] in  our  previous  publications.  It
covers 374 molecules (4 inactive compounds). Always
in  cluster1,  SHAP2  is  associated  with  a  typical
subfamily of our training set with a very close scaffold
for 289 compounds in agreement with the scaffold 7. 

N
H
N

O

7

The  last  MMRFS  pharmacophore  for  cluster1
(SHAP3),  associated  to  378  molecules,  gives  only  4
new active molecules (and new scaffolds) compared to
SHAP1. SHAP1 and SHAP2 of cluster1 correspond to
SHAP2 and 3 of cluster2. SHAP1-3 of cluster2 covers
94%  of  active  molecules  but  with  56%  coverage  of
inactive molecules. 

3.4. Prediction on decoys

In order to better assess the predictive capability of
the  clustering  and  the  supervised  learning  of  the
SWMLR,  the  classification  of  the  10885  decoys  (all
potentially  inactives)  associated  to  ABL1  data  (DUD-
E[22]),  were  analyzed  for  each  of  the  three  different
descriptors. The results are depicted in Table 3, Table
5 (MMRFS) and Figure 11. 

FrP  outperforms  ECFP4  and  FCFP4.  Only  20
decoys are associated with an active cluster with FrP
which  is  very  surprising  compared  to  the  other
descriptors.  SWML  and  SWMLR lead  globally  to  the
same results (see  Figure 11, n = 96 for misclassified
compounds with SWML/FrP). For an explanation, FrP
are  more  precise than  a  structural  fragment  with,  for
each FrP, at least three pharmacophoric features with
precise  distances.  The  other  point  is  the  fact  than
DUDE decoys were defined  to  analyze the quality  of
docking  studies.  They  must  physically  resemble  to
ligands  but  be  topologically  dissimilar.  In  the  final
decoy  definition  procedure,  ECFP4  fingerprints  were
generated  for  real  ligands  and  potential  decoys.
Decoys were sorted based on their maximum similarity
to  any  ligand,  and  the  most  dissimilar  25%  were
retained through this dissimilarity filter [22].

.
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Table 5. Repartition of the compounds into the three clusters (k = 3) for the initial data set and for the decoys with MMRFS.

ligands Initial data set Active for decoys

cluster0 cluster1 cluster2 cluster0 cluster1 cluster2

MMRF
S

Inactive 642 0 64 9991 0 894

Active 112 384 277 0 0 0

Table 6. First three MMRFS pharmacophores for each cluster with SHAP (see Figure 1 for an explanation of the symbols).
The recall value indicated corresponds to the contribution of each pharmacophore to the recall for the three pharmacophores.

The recall values are additives from the first pharmacophore to the third.

SHAP1 SHAP2 SHAP3

Cluster0 
2 2

2

4
4

2

0

0

0

2

2

4

Recall_active 0.45 0.46 0.46
Recall_inactive 0.56 0.72 0.75

Cluster1

1

7

9

5
70

2

5
3

1

0

0

2
2

1
2

4

3

5

2

2

5
4

3

3

9

5
70

2

1

Recall_active 0.48 0.59 0.60
Recall_inactive 0,0057 0,0057 0,0057

Cluster2
2 2

2

1

7

9

5
70

2

5
3

1

0

0

2
2

1
2

4

3

5

2

2

5
4

3

3

Recall_active 0.45 0.82 0.94
Recall_inactive 0.56 0.5637 0.5637

We think  that  a  higher  dissimilarity  value,  for  the
definition of decoys, could lead to a different result in
our study with ECFP4 and FCFP4 for our analysis. It is
surprising  to  see  the  distribution  of  the  decoys  into
cluster1  and cluster2 in  a  large majority  (only  209 in
cluster0 for FCFP4).

Figure 11. Number of misclassified compounds SWML
(White) and SWMLR for decoys with the three descriptors.

Decoy prediction was also performed with MMRFS
in  conjunction  with  SHAP  (see  Table  5).  The

performances  compared  to  FrP are  logically  reduced
but  still  remains  very  good  (759  compounds
misclassified).  An  example  is  shown  in  Figure  12
where  compound  5 (ZINC49918351),  one  of  the  20
misclassified compounds with SWMLR/FrP, is close to
an active compound  6 (CHEMBL1164265,  IC50 = 100
nM) in cluster2. 

Figure 12. ZINC49918351 vs CHEMBL1164265
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4. Conclusions

The  definition  of  a  new  type  of  pharmacophoric
descriptors called FrP leads to convincing results with
machine  learning  techniques  associating  feature
transformations  with  FNN and classical  clustering.  In
our  dataset,  supervised  feature  transformation  with
regularization  (SWMLR)  performs  best.  The  definition
of three clusters (FRP / SWMLR), for BCR-ABL data,
allows to obtain good predictive results with our initial
data  set and  with  decoys.  In  the  end,  on  the  three
clusters, the two active clusters are different in terms
of  constraints  with  FrP.  SHAP  analysis  (defining
feature  importance)  shows  that  most  MMRFS
pharmacophores  associated  with  cluster1  have  high
values for GR (more discriminating pharmacophores).
The results by the same techniques with ECFP4 and
FCFP4  are  disappointing  especially  for  decoys.  This
new and  original  approach  with  FrP  is  promising  for
virtual screening of chemical databases. This work is a
first  step  toward  an  interactive  learning  process,  in
which we will  focus on discovering the capabilities  of
our  pharmacophores  to  understand  the  behaviour  of
chemicals. 
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