
Understanding episode mining techniques:

benchmarking on diverse, realistic, artificial data

Albrecht Zimmermann
DTAI Lab, Computer Science Department, KU Leuven

Celestijnenlaan 200A, B-3001 Leuven, Belgium
Email: albrecht.zimmermann@cs.kuleuven.be

Tel.-Nr: +3216327823

March 14, 2013

Abstract

Frequent episode mining has been proposed as a data mining task for
recovering sequential patterns from temporal data sequences and several
approaches have been introduced over the last fifteen years. These tech-
niques have however never been compared against each other in a large
scale comparison, mainly because the existing real life data is prevented
from entering the public domain by non-disclosure agreements. We per-
form such a comparison for the first time. To get around the problem of
proprietary data, we employ a data generator based on a number of real
life observations and capable of generating data that mimics real life data
at our disposal. Artificial data offers the additional advantage that the
underlying patterns are known, which is typically not the case for real
life data. Thus, we can evaluate for the first time the ability of mining
approaches to recover patterns that are embedded in noise. Our experi-
ments indicate that temporal constraints are more important in affecting
the effectiveness of episode mining than occurrence semantics. They also
indicate that recovering underlying patterns when several phenomena are
present at the same time is rather difficult and that there is need to de-
velop better significance measures and techniques for dealing with sets of
episodes.

pattern mining, episode mining, data generation, quality evaluation

1 Introduction

In quite a few real life applications, data streams in continuously and is stored
as a sequence of time-stamped events. Examples of such data include telecom-
munication status messages, web logs, sensor readings of earth quakes, sensor
readings and status codes logged on assembly lines or industrial machinery, net-
work traffic, user interface traces, and train schedules. If some of these events

1

are considered exceptional in some way, e.g. an alarm in an industrial plant or
a network traffic event that is considered an unauthorized intrusion, an obvious
data mining setting consists of trying to identify patterns that appear in the
time before these special events. Such patterns can then be used to predict
the occurrence of related events in advance or to identify for instance the root
causes of an alarm that have to be corrected to alleviate the situation.

Frequent episode mining has been proposed to address this issue and in the
last fifteen years, numerous papers have proposed techniques for finding frequent
episodes [18, 19, 9, 21, 17, 26, 27, 28].

A major problem is that most of these techniques have not been evaluated
on a common benchmark set, let alone a collection of benchmarks. The main
reason for this is that event data that is collected in industrial settings is often
covered by non-disclosure agreements (NDAs) that prohibit those data from
being passed on or put into the public domain. This has prevented the emer-
gence of collections of appropriate data sets that could fulfill the roles the UCI
repository has for machine learning [7], the FIMI repository for itemset mining
[13], or the UCR collection of data for time series classification and clustering
[15].

Given this limited access to data, an extensive experimental evaluation on a
large range of real life datasets is practically impossible, and most papers resort
to comparisons on textual data or on one real life (often industrial) dataset.
This in turn has its own pitfalls: On the one hand, textual data does not have a
temporal aspect and it is unclear whether the generating process (grammar) has
anything in common with generating processes in natural or industrial settings.
On the other hand, the enumeration of application settings above shows how
varied data contexts are. Since most NDAs prohibit even the publication of data
characteristics that could be stored together with episode mining results in ref-
erence databases [8], it is therefore unclear whether results from one application
setting can be expected to transfer to the other settings. Finally, even if real
life data with similar characteristics as the data set in question were available,
the lack of knowledge about the underlying patterns in such data would make
it difficult to find out which of the returned patterns are relevant.

As a result of this, after 15 years of episode mining research, two important
question remain unanswered:

Q1 Do episode mining approaches recover the patterns underlying the data
at all?

Q2 What are the effects of data characteristics on the effectiveness of different
episode mining approaches?

As a solution to this problem, we propose artificially generating data with
controlled characteristics and known hidden phenomena, as used in the single
graph (network) mining [10] and SAT solving communities [23]. Using such
data would allow the kind of large scale comparisons that have been missing
from the literature so far. Furthermore, they can be used to guide knowledge
discovery by generating data with similar characteristics as a real life data set

2

under consideration, mining patterns on it, and then applying the insights about
pattern recovery to the result from the real life data set. To fulfill this purpose,
the generator should satisfy three requirements:

1. It should make it possible to verify the results of mining operations. (Ver-
ifiability)

2. It should be flexible, making it possible to generate diverse data sets for
benchmarking. (Diversity)

3. It should mirror real life data characteristics. (Realism)

Our first contribution is a data generator fulfilling these criteria, which we
describe in the first part of the paper. The starting point of our work is that,
despite the lack of data, we can develop a data generator that reflects industrial
common sense and practical experience and that is sufficiently general to create
wide ranges of datasets matching this experience.

The second contribution is that once we have our data generator, we use
it to answer the two questions posed above, by evaluating a number of well-
established episode mining techniques on data with a wide range of charac-
teristics. Furthermore, we perform the kind of knowledge discovery guidance
outlined above, by demonstrating how to manipulate the generator to generate
data in line with real life characteristics, and then using this data to evaluate the
capability of the episode mining techniques to recover the underlying patterns.

In the following section we recount the basics of episode mining. In Section
3, we discuss related work, both in terms of episode mining and data generation.
In Section 4, we discuss Laxman et al.’s data generator [17], critique some of the
assumptions made, and propose and argue for alternatives and extensions. We
also give a description of source episode and data generation. In Section 5, we
show characteristics of artificial data used in earlier work, contrast them with
the real life data at our disposal and show how to generate data with similar
characteristics as the real life data at our disposal. Using the generator to
generate data sets with a variety of different characteristics, we compare several
well-established episode mining techniques and identify challenging (and easy)
data characteristics in Section 6. Following that, we show the performance of
those techniques on the artificial data that mimics our own, in particular the
ability to recover the underlying patterns (Section 6.5). Finally, in Section 7,
we summarize our work and conclude.

2 Episode Mining

We mainly follow the notation of [18]:
Given a class E of event types, an event is a pair (E, t), E ∈ E , t ∈ N+. An

event sequence S is a triple (ts, te, S) with ts the starting time, te the end time,
and S an ordered sequence of events:

〈(E1, t1), . . . , (Em, tm)〉

3

with Ei ∈ E , ∀i : ts ≤ ti ≤ te and ∀ti, tj , i < j : ti ≤ tj , e.g.:
(1, 141, 〈(E, 1), (A, 12), (B, 15), (C, 25), (D, 25), (A, 36), (B, 38), (C, 55),

(E, 66), (D, 75), (A, 94), (E, 109), (B, 124), (C, 131), (D, 141)〉)
An episode ε = (Vε,Eε, gε) is a set of nodes Vε, a partial order Eε on Vε and

a mapping gε : Vε 7→ E associating each node with an event type. If the order
is a total order C, ε is called serial, if there is no ordering at all, parallel, if
both orders are allowed in episodes, they are referred to as general. An episode
ε is said to occur in an event sequence S at interval [l, u] if the events to which
Vε are mapped occur in that interval in the same order as they occur in the
episode.

Example 1 An episode occurring in the event sequence above would be ({v1, v2},
{v1 C v2}, {v1 7→ A, v2 7→ B}). It occurs, e.g., in [94, 131]. If there is no repe-
tition of events in an episode, we fold the mapping of nodes to event types into
the set of vertices itself.

A window on S is an event sequence W = 〈twb, twe,W 〉 with ts ≤ twb ≤
twe ≤ te and

W = {(Ei, ti) ∈ S | twb ≤ ti ≤ twe}.

A window is said to be of size w = twe − twb + 1. Given S and w we can define
the set of all windows of size w on S: aw(S)

Example 2 If we assume a maximal window size 15, the first five windows were
in order [1, 15], [2, 16], [3, 17], [4, 18], [5, 19] comprising the episodes: 〈E,A,B〉,
〈A,B〉, 〈A,B〉, 〈A,B〉, 〈A,B〉.

Given a fixed window size w, the frequency of ε is the number of fixed-size
windows on S in which it occurs:

freq(ε,S, w) = |{W ∈ aw(S) | ε occurs in W}|

The total frequency of ACB for a maximal window size 15 would therefore be
25, with the first A and B contributing 12 counts, the second ones contributing
13. So-called windows-based episode mining (WinEpi) [18] approaches require
the user to specify a window size and a frequency threshold.

By the same authors, an alternative frequency definition has been proposed,
that of minimal occurrences. A minimal occurrence of ε is an interval [l, u] at
which ε occurs, and for which no proper sub-interval [l′, u′] ⊂ [l, u] exists such
that ε occurs at [l′, u′]. The frequency definition in this case changes to the
number of minimal occurrences of ε (MinEpi [19]).

Example 3 A minimal occurrence of ({A,B}, {ACB}), for instance, is [12, 15],
and of ({B,C,D}, {BCC,BCD,CED} [15, 25]. The frequency definition based
on the number of minimal occurrences of ε, e.g., freq(({A,B}, {ACB})) =
|{[12, 15], [36, 38], [94, 124]}| = 3, gives an arguably more intuitive count.

4

As an improvement of the minimal occurrence semantic, non-overlapping
occurrence counts have been proposed [17, 26]. We reproduce here the definition
given by Laxman et al.:

Two occurrences of an episode are said to be non-overlapping if no event as-
sociated with one appears in between the events associated with the other. The
frequency of an episode is defined as the maximum number of non-overlapping
occurrences of the episode in the event sequence.

Example 4 To illustrate this, let us change the example sequence from above to
(1, 141, 〈(E, 1), (A, 12), (A, 13),(B, 15), (B, 20),(C, 25), (D, 25), (A, 36), (B, 38),
(C, 55), (E, 66), (D, 75), (A, 94), (E, 109), (B, 124), (C, 131), (D, 141)〉) The oc-
currence of 〈ACBCC〉 that starts at 12 and end at 25 prevents the occurrence
of the same episode that starts at 13 from being counted in the non-overlapping
semantic.

Tatti et al.’s [27] definition for closed strict episodes is somewhat more in-
volved. We only sketch it here but direct the reader to the original publication,
should she be interested in details. They consider generalized episodes as di-
rected acyclic graphs and define an episode ε as strict if for any v, w ∈ Vε :
gε(v) = gε(w) there exists a path from v to w (or from w to v). They further-
more define a concept called instance-closure, and mine only instance-closed
episodes, proving that those episodes are also frequency-closed.

Finally [9, 21] aimed to move away from the fixed nature of maximal windows
and the problems it entails by proposing frequency formulations based on inter-
event time-gap constraints.

3 Related Work

A recent overview of temporal pattern mining techniques can be found in [16].
Early work in the field [18, 19, 20, 9, 21] used real life data for which the
ground truth was not known, augmented with non-temporal sequential data,
i.e. text or protein sequences. Non-temporal data has the characteristic that
only the order in which elements occur in the episode is relevant, not the time
delay between events. Most of the real life data is not publicly available, and
with the exception of [20], algorithms have not been compared to each other
on those data. The seminal paper [18] introduced WinEpi mining, performed
efficiency experiments on one data set, and found episodes were evaluated by
consulting domain experts. In a follow-up to their earlier work [19], the authors
proposed the MinEpi formulation, evaluated efficiency on one data set and gave
examples of discovered episodes. In a third work [20], the authors compared the
two algorithms on five data sets (two temporal, three non-temporal). This series
of papers therefore offered some evidence regarding the (relative) performance
of the proposed techniques but that evidence was limited.

The technique proposed in [9] replaced the fixed-size windows within which
an episode can occur by maximum constraints on the size of inter-event time-
delays. The technique was evaluated on non-temporal data for which an existing

5

pattern was known. The authors of [21] showed that the algorithm of [9] is
incomplete. After correcting this, their technique was evaluated on a temporal
data set w.r.t. efficiency. In both cases, only limited amounts of data were used.

More recent works [17, 26, 27, 28] have used artificial data to experimentally
validate their proposed approaches in addition to real life data. Laxman et al.
[17] proposed a generative model based on HMMs, which assumes uniform noise
distribution. We will discuss their generator and the underlying assumptions
in more detail in the next section. They introduced non-overlapping occurrence
counts, and experimentally showed on artificially generated data that using this
occurrence measure allows recovering the underlying patterns, and leads to more
efficient episode mining than the WinEpi approach. The authors also argue that
their technique will be more efficient than MinEpi mining. In addition, mining
on a temporal real life data set is performed. Tatti et al. [26, 28] used artificial
data corresponding to extreme cases to demonstrate the superiority of their
technique in those contexts. Tatti [26] took a different approach to establishing
significance by comparing the average lengths of discovered minimal windows
to an independence model, using the same non-overlapping occurrence count.
The technique was evaluated on four data sets, two non-temporal, two artificial.
Recent work by the same author [27, 28] introduced the concept of closed strict
episodes, in which any two nodes in an episode having same the label need to
be connected by a path, mined using fixed windows (ClosEpi). The authors
show that this includes all serial, parallel and most general episodes yet allows
to enforce a closure property. The authors evaluated their technique on three
text data sets in [27], a single artificial data set and two real life data sets whose
characteristics are not specified in [28]. While those evaluations were more
systematic than in earlier works, there were still only few data sets involved,
showing a small range of characteristics.

The current situation of episode mining has parallels in the developments in
itemset mining. Since unsupervised pattern mining does not offer itself to such
a clear “right or wrong” evaluation measure as accuracy, evaluating whether
any mining operation actually returns the underlying patterns is not an easy
task. It has been established only tentatively that such underlying patterns
would be recovered. The original Apriori paper [2] proposed a data generator
meant to mirror real life distribution characteristics of supermarket transaction
data to evaluate the efficiency and effectiveness of itemset mining techniques.
The first comparison of itemset mining techniques on new data was performed
by Zheng et al. [31] showing that the artificially generated data has rather
different characteristics from real world data. In the evaluation of several al-
gorithms proposed as improvements to the original Apriori algorithm, results
on the artificial data set could not be transferred to real world data. Partially
in reaction to this, the pool of benchmark data for itemset mining approaches
was extended with the newly introduced real life data and several large UCI
data sets, and two Frequent Itemset Mining Implementation competitions held
[12, 4]. The focus lay on efficiency questions, with the nature of the data making
evaluation of pattern recovery impossible. De Bie [5] used a maximum entropy
model to evaluate whether unexpected patterns mined from a database are still

6

exceptional after item permutation under certain constraints.
These works therefore combine to show how problematic it can be to de-

pend on a small number of data sets showing a narrow range of characteristics
when evaluating unsupervised pattern mining techniques. Furthermore, they
illustrate the lack of knowledge regarding the effectiveness of pattern mining
approaches and the difficulty of establishing this effectiveness using existing
data sets.

Artificial data generation has been explored in more depth in other fields
related to episode mining. In the context of classification experiments in stream
data with concept drift, [25] generated data by generating three-dimensional
data points whose classification is chosen based on the sum of the first two
dimensions compared against a threshold value. Class noise can be added. The
STAGGER concept generator was introduced in [24]. It generates instances
described by three nominal attributes, having two class labels. Class noise can
be added. Bifet et al. [6] used the tree generator introduced in [30] by generating
one source tree for each class and adding label drift during data generation. Such
data generators can therefore be used to evaluate the performance of different
algorithms under varying conditions. Classification in data streams is clearly
different from episode mining – most importantly data points can be expected
to satisfy i.i.d. assumptions to a certain degree. Nevertheless, as we will lay out
in the next section, both the concepts of class noise, and of drift correspond to
aspects of realistic data generation.

Mueen et al. [22] used a random walk generator to produce large sets of
numerical time series data for the purpose of testing time series motif discovery
algorithms. From the field of process control comes the Tennessee Eastman
generator first described in [14], a complex generative model relating numerical
values.

Outside of episode mining, there have been attempts in sequential mining to
establish the significance of found patterns and identify challenging problems.
Atallah et al. [3] used a reference source to calculate a significance threshold
giving a guarantee on the error probability. The authors evaluated their analytic
framework on a real life temporal data set and find agreement between the ana-
lytic results and empirical patterns mined. Chudova et al. [11] used artificially
generated data to evaluate how, e.g., alphabet size, pattern length, pattern
frequency, and auto-correlation influence the difficulty of recovering patterns.
They formulated several equations relating the afore-mentioned characteristics
of the data to the Bayes error rate. These works therefore established some of
the limitations of existing approaches and gave some guidance regarding what
to expect when using them.

The single-graph (or network) mining community, finally, has introduced
data generators [10], the authors of which were in the advantageous position
that information about the characteristics of real life networks existed that could
then be exploited in data generation. The SAT solving community also uses
artificially generated data [23] to ascertain the run time behavior and success
probabilities of SAT solvers [29].

As this enumeration shows, artificial data sets can and have been used to

7

evaluate mining and learning approaches, and establish their effectiveness and
run time characteristics, and can therefore help closing the gap in knowledge
about episode mining.

4 Data Characteristics and Generation

The considerations outlined in the introduction lead us to believe that a robust
collection of artificial data showing varied, real-world inspired characteristics
will facilitate improvements in episode mining research. Unfortunately, as we
explained, the lack of real life data or even characterizations of real life data sets
makes it difficult to come up with an unambiguous prescription of how artificial
data should look like.

However, consultations with our industrial partners in the context of a
project allowed us to collect “common sense” assumptions and practical ex-
perience with data and the systems generating them. The project had to do
with mining episode patterns from industrial log files to help modeling the life
cycle of machines. Especially early on, the mined patterns were perplexing –
alarms occurring or repeating when they should not have, surprisingly large
time delays in the data etc. – which lead to consultations with the engineers de-
signing the machines. From those consultations arose the properties we report
here and attempt to model later on.

Specific properties of event sequences in an industrial context are that

P1 time stamp information is important – events that occur with large delay
are unlikely to be related

P2 events can be missing – sensors may fail, or network connections be inter-
rupted, for instance

P3 events can repeat within a sequence – several threshold violations could
be needed before an alarm is triggered

P4 events can occur in more than one sequence – too high and too low pressure
could be detected by the same sensor but lead to different alarm events

P5 machinery can be in different states – and therefore generate different
episodes at different times in the life or production cycle

We use this information to guide our design decisions: in the next section
we quickly summarize the data generator proposed in [17], contrasting its un-
derlying assumptions with the real-world properties listed above (Section 4.2),
before we discuss the plausibility of used distributions in Section 4.3.

4.1 The HMM-based generator

To the best of our knowledge, the HMM-based generative model proposed in
[17] is the so far most comprehensive generator for artificial episode mining

8

data. A very attractive feature of this generator is that it first generates source
episodes which it then embeds in the data sequence. Any mining results could
therefore be compared to those source episodes to gauge their accuracy, fulfilling
the verifiability requirement. The parameters of the model encompass:

• The noise probability parameter (p ∈ [0, 1]), i.e. the probability that
events do not belong to an embedded episode. The authors report on
experiments for p ∈ {0, 0.2, 0.3, 0.4, 0.5}.

Example 5 It is important to realize that the noise probability is applied per
event. To give an example, let an embedded episode take the form ACBCCCD,
and arbitrary noise events denoted by E. A noise probability of 0.2 would result
in 1 noise event per 5 events, i.e. 1 noise event and 1 episode, on average in
the data, e.g.: E, A, B, C, D, A, B, C, E, D, A, B, E, C, D (time-stamps
omitted). A noise probability p = 0.4 would result in 2 noise events per 5 events
on average while conversely p = 0.1 results in only a single noise event per 10
events etc.

Any events that are not the result of episodic behavior are expected to arise
independently which makes event-wise noise probability a plausible choice for
modeling.
Additional parameters of the HMM generator are:

• The number of source episodes of which instances will be embedded in the
data (n).

• The length of source episodes (N).

• The size of E (M).

• The total length of the data sequence (T).

Artificial data generated by this model can therefore be characterized by a
tuple 〈p, n,N,M, T 〉 with domain 〈[0, 1],N+,N+,N+,N+〉.

4.2 Extending the generator to fit real-world experiences

The HMM model makes a number of explicit and implicit assumptions about
data characteristics that are invariable, violating the diversity requirement, in
addition to the realism requirement, as we will argue. First and foremost, the
authors consider time stamp information itself irrelevant:

“the actual values of event times are not important. The event
times are used only to order events and only this ordering is needed
to count episode occurrences. Thus, when analyzing the frequent
episode discovery process, it is enough to consider a model which
generates an ordered sequence of event types.” [17]

9

As a result, time stamps, with which events are annotated, are incremented by
a “small random integer” every time an event is created. No information is
given about the interval from which this integer is sampled and the sampling
process. On the one hand, this collides with practical property P1. On the
other hand, a larger interval from which to sample delays would also lead to
more variability, allowing to test a wider range of data characteristics. We
therefore add a parameter controlling

• the explicit maximum delay between any two successive events (g ∈ N+).

In the default setting time delays are sampled uniformly from the interval [1, g].

Example 6 For a maximal delay of g = 20, the data sequence in the preceding
example (p = 0.2) might for instance take the form: (E, 1), (A, 12), (B, 15),
(C, 25), (D, 26), (A, 36), (B, 38), (C, 55), (E, 66), (D, 75), (A, 94), (E, 109),
(B, 124), (C, 131), (D, 141).

The mining techniques that we have described in Section 3 abstractly con-
sider time delays only at one granularity. In fact, while actual data can include
temporal information at different granularities, e.g. days, hours, minutes, it
is necessary practice when using existing episode mining implementations to
translate this information into time stamps represented by integers, e.g. by
multiplying hours by 3600, adding minutes multiplied by 60 etc. We therefore
use only one level of granularity for time stamps in our generator for the time
being.

Also, in viewing only the order of events as relevant, Laxman et al. view
the delay between any two successive events in an embedded episode as uncon-
strained. In real world phenomena one would expect a temporal correlation
of events generated by the same process, and we therefore add an additional
parameter to the model determining

• whether or not to enforce that any two successive events of a source
episode have at most a time delay of g when embedded in the data
(h ∈ {true, false}).

Example 7 To illustrate the effect that unconstrained time delays have, con-
sider a setting with g = 20, p = 0.2, and an embedded episode of length 4.
Uniform sampling over [1, 20] will lead to an average delay of 10 between suc-
cessive events. For p = 0.2, this leads to an average episode duration of 40.
For p = 0.4, however, the average duration will increase to 67. This means that
the probability of noise affects the duration of the signal in the unconstrained
model.

Laxman et al. also make two assumptions about the events involved in
source episodes: a) event types do not repeat within a single episode and b)
different source episodes do not share any event types, in contrast to P3 and
P4. This is not necessarily the case in real life data:

10

Example 8 A sensor reading could, e.g., exceed a certain safety value but de-
pending on the system, it might take several such events for an alarm to be
triggered, leading to an embedded episode with repeating event types. Similarly,
a given warning might be caused by any of a variety of sensors exceeding a safety
threshold, causing several episodes to share the last event type.

These considerations lead us to extend the model additionally by parameters
governing

• whether or not event types repeat in a single source episodes (r ∈ {true, false}).

• whether or not different source episodes share event types (s ∈ {true, false}).

The data in [17] is generated by interleaving the embedded episodes randomly.
While this is a realistic assumption, interleaving episodes can be expected to
make it much harder for mining techniques to recover underlying patterns since
false occurrences of regularity can be detected. For the sake of flexibility, we
therefore add a parameter controlling

• whether embeddings of the same source episode can interleave (i ∈ {true, false}).

The HMM model also embeds source episodes concurrently. In contrast to
this, a system, e.g. a production machine, could be in different stages, e.g.
peak performance, deterioration, and near breakdown, with different episodes
generated in each stage (property P5). This is similar to the concept drift
explored in data streams. We therefore add an additional parameter that affects

• whether source episodes are embedded successively or not, i.e. concur-
rently (S ∈ {true, false}).

Finally, as mentioned in point P2, our experiences with real world data lead
us to add a failure probability parameter modeling:

• whether information that should be logged, such as a sensor reading, is in
fact not logged (o ∈ [0, 1]).

This parameter is arguably related to the concept of “class noise” in classification
in data streams.

So far, we have only extended the generator with a number of additional
parameters, bringing it much more in line with our (and others’) experiences
with real-world data. Yet, the data generator we propose will already allow to
generate data sets of a much larger variety that can be described by the tuple
〈p, n,N,M, T, g, o, h, r, s, i, S〉 with domain
〈[0, 1],N+,N+,N+,N+,N+, [0, 1], {t, f}, {t, f}, {t, f}, {t, f}, {t, f}〉.

4.3 Adding realistic distributions

Among the assumptions made by Laxman et al. and others are uniform distri-
butions for noise events and distinct source episodes. Deciding on appropriate

11

Numerical parameters (default values)
p – probability of noise events (0.2)
N – length of source episodes (4)
M – size of the alphabet of event types (20)
n – number of source episode (1)
T – total number of events in the data (5000)
g – maximal delay between any two successive events (20)
o – probability that a source episode’s event is not embedded (0.0)
G – “base mean” of a normal distributions (variance G/10) (300)
m – number of normals to mix, with means G, 2G, . . . ,m ·M (1)

Table 1: The numerical parameters of the data generator with default settings
in parentheses

distributions is more difficult than introducing parameters allowing for real-
world like behavior. We would posit, however, that uniform distributions are
not common in real-world phenomena, generally speaking, with, e.g., normal
or Poisson distributions more common. This position is supported by empiri-
cal distributions observed in the data at our disposal appear to be normally or
Poisson generated, as we will illustrate in Section 5.

Arguably the first of the choices that can be questioned is the assumption
that all source episodes arise with the same probability. In a real life system,
some phenomena are more likely to occur than others, with resulting effects on
the probability of recovering the patterns. We therefore make this distinction
explicit by adding a parameter that controls

• whether or not source episodes have different weights (W ∈ {true, false}).

Also, while noise events can be expected to arise independently from each
other, assuming a uniform distribution is rather restrictive since individual noise
events can have different probabilities. The data at our disposal shows event
types that are not uniformly distributed. Additionally, this difference will have
direct effects on any episode mining operation since uniformly distributed noise
should look very different than recurrent phenomena whereas, for instance,
poisson-distributed noise can give the appearance of regularity. We therefore
add a parameter governing

• whether noise is uniformly or Poisson-distributed (P ∈ {u, p}).

As before, we let ourselves be guided by the characteristics of the data at our
disposal. There are of course other distributions that could govern noise dis-
tribution, e.g. Pareto or other power law distributions. There is no reason not
to include these distributions and we intend to continuously extend our data
generator to make it more useful for benchmarking. Given the characteristics
of the data at our disposal, as well as the already extensive experiments, we
forwent the exploration of additional distributions for the time being.

12

Nominal parameters (default settings)
P ∈ {u, p} – noise is uniformly or Poisson distributed (u)
r ∈ {t,f} – event types repeat in source episodes (f)
s ∈ {t,f} – event types are shared among source episodes (f)
i ∈ {t,f} – embeddings of source episodes can interleave (f)
W ∈ {t,f} – source episodes have different probabilities (f)
h ∈ {t,f} – delays between successive events of a source episode ≤ g (≤ m ·G) (f)
S ∈ {t,f} – source episodes are embedded successively (f)
d ∈ {u, n} – noise delays are uniformly or normally distributed (u)
D ∈ {u, n} – embedding delays are uniformly or normally distributed (u)

Table 2: The nominal parameters of the data generator with default settings in
parentheses

Finally, a similar argument can be made w.r.t. time delays between events:
the time delays we observed show a distribution resembling a normal distribution
and normal distributions can be expected to occur in realistic data:

Example 9 Continuous sensor readings might overwhelm the data storage of a
production machine. If sensor readings are taken every minute and an event is
generated if readings have changed by at least a certain amount, all events can
be expected to occur multiples of sixty seconds apart.

We therefore add parameters affecting the delay distribution:

• for noise (d ∈ {u, n}), and

• embedded episodes (D ∈ {u, n}).

Since it could happen that, for instance, noise has normally-distributed delays
while episode events appear with uniformly distributed time delays, we do not
want to supersede g, and instead introduce a parameter G that determines the
base mean of the normal distribution (variance is set to G/10). To allow for
more complex delay distributions, we assume that the actual distribution is a
mixture of m normal distributions with means G, . . . ,m ·G, respectively.

The parameters of our generator are shown in Tables 1 and 2, together with
default values.

4.4 Data Generation

In this section, we outline how the different parameter settings affect data gen-
eration algorithmically. We begin by giving pseudocode of the algorithm gener-
ating source episodes (Algorithm 1). Since the algorithm for generating the data
itself consists mainly of a number of nested if-then statements, we abstain from
pseudocode and instead give a natural language description. The alphabet for
event types we use is actually a subset of N+, i.e. M = |E| ⇒ E = {1, . . . ,M}.
This has two immediate advantage: on the one hand this means that we do

13

not run into difficulties if M > 94, the maximum number of non-special ASCII
symbols. On the other hand, this allows us to generate Poisson-distributed noise
events directly, since our alphabet is already ordered, as we will explain below.

Generation of source episodes As a first step in data generation, we gener-
ate the source episode(s). For each of the N event types per episode we sample
uniformly from E .1 If r = false, we reject the event if it already occurs in the
same source episode, if s = false, we reject it if it occurs in a source episode that
has been generated already. If r = true and there has been no repetition on
reaching the Nth element of an episode, we sample from the already involved
event types of this episode. If s = true and there has been no shared event type
on reaching the Nth element of an episode, we sample from the event types of
already generated source episodes. Finally, if W = true, we sample a weight for
the episode uniformly from (0, 1], and normalize the weights in the end so that
they sum to 1.

Data set generation For the actual data set, we start with a time stamp
t = 1 and S = ∅. As long as |S| < T , we generate a noise event with probability
p, sampled according to P from E , at time stamp t. The Poisson distribution
has a single parameter, the mean, which is set to dM/2e, and the result of
sampling from it is used directly as noise event type. As an aside, this means
that for a given M the noise event types will have roughly the same distribution
for different data sets but since the event types of source episodes have been
selected independently, the interplay of noise and episodes will change.

With probability 1 − p, an episode event is generated. If S = true, source
episode εi becomes embedded as long as for the current event count T ′ holds
that T ·

∑i−1
j=1 weightj < T ′ ≤ T ·

∑i
j=1 weightj , otherwise all source episodes

are embedded concurrently along the entire length of the data sequence. In the
latter case, if i = false, one of the n source episodes is chosen randomly (with
equal probability if W = false, weighted otherwise). If a partially embedded
instance of that episode exists, the next event type is read from it, otherwise a
new embedding started.

If i = true, let PE be the set of partial embeddings. A random integer
value from [1, |PE |+ 1] is chosen, with |PE |+ 1 corresponding to starting a new
embedding (subject to the constraints imposed by S).

Finally, t is increased with a random value δ ∈ [1, g], if the delay distribution
for the type of event (noise, or otherwise) is uniform. Otherwise, the normal
distribution to be used is chosen by sampling from a geometric distribution with
mean 1/m, and δ sampled from the normal distribution with the respective
mean. If h = true and there is any partial embedding whose last event occurred
at time stamp te : t + δ − te > g (te : t + δ − te > m · G) for a uniform
(normal) distribution, an event is generated from that partial embedding at

1This is another choice that could be made differently but that we made since we were
given no indication to believe that certain event types were inherent more (or less) common.

14

Algorithm 1 Source episode generation

source = ∅
for 1 ≤ i ≤ n do
εi = (Vεi = ∅,Eεi = ∅, gεi = ∅)
repeated = false
shared = false
for 1 ≤ j ≤ N do

while E not accepted do
E sampled uniformly from E
if r = false ∧∃v ∈ Vε : v 7→ E ∈ gε then

reject E
else if r = true ∧∃v ∈ Vε : v 7→ E ∈ gε then

accept E
repeated = true

else if r = true ∧ repeated = false ∧ j = N then
sample E uniformly from gεi(Vεi)
accept E

if s = false ∧∃v ∈ Vεi′ , i
′ < i : v 7→ E ∈ gεi′ then

reject E
else if s = true ∧∃v ∈ Vεi′ , i

′ < i : v 7→ E ∈ gεi′ then
accept E
shared = true

else if s = true ∧ shared=false ∧j = N then
sample E uniformly from

⋃
i′<i gεi′ (Vεi′)

accept E
Vεi = Vεi ∪ vj
if j > 1 then
Eεi = Eεi ∪ {vj−1 E vj}

gεi = gεi ∪ {vj 7→ E}
source = source ∪εi
Sample weighti

for 1 ≤ i ≤ n do
weighti = weighti∑n

j=1 weightj

15

te + g (te + (m ·G)).2

5 Data examples

As the preceding section shows, the proposed generator satisfies the first two
requirements: 1) the embedding of source episodes allows the verification of
episode mining results, and 2) a number of numerical and nominal parameters
give it the flexibility to generate diverse data sets. We have also argued that
the third requirement – realism – is fulfilled. In this section, we add empirical
support that our generator satisfies the realism requirement. We begin by gen-
erating data consistent with the assumptions made in [17, 28] and discuss their
characteristics in the context of the respective papers’ underlying motivation.
We then contrast those data with the real life data sets at our disposal and out-
line how the generator can be used to generate data with similar characteristics,
demonstrating its flexibility along the way.

Characterizing unsupervised data sets is notoriously difficult and few char-
acterizations and similarity measures have been developed, in particular if re-
labeling effects can occur: if one takes an event sequence and randomly permutes
the labels of its event types, existing measures will wrongly consider the two
data sets different. We therefore limit ourselves to distributional characteris-
tics, i.e. the (shape of) the distribution of event types in the data and the
distribution of time delays in the data, and consider two data sets similar when
they approximately agree in those distributions. In particular, this is the way
we assess the similarity of our generated data with the real life data at our
disposal.

5.1 Effect of noise probability and distribution on event
type distributions

The first two figures show the shape of the event type distribution of data
generated using settings used in [17], i.e. n = 2, p = 0.3, i = true, h = false,
P = u, and [28] (N = 8, p = 0.38, P = u).

In the first case (Figure 1), the event type distribution shows that on the one
hand the events involved in embedded episodes are strongly expressed, which
should make recovering something related to the underlying patterns relatively
easy. On the other hand, there are only few noise events so that overlap and
close proximity of embeddings can lead to the “discovery” of patterns that are
different from the source episodes. This is an intended effect since this data
set is therefore well-suited to demonstrating the superiority of non-overlapping
occurrence counts over traditional methods.

A similar motivation underlies the generation of the artificial data in [28],
shown in Figure 2. Drawing noise labels from a very large alphabet means
that the embedded pattern (and combinations and permutations of it) clearly

2We have implemented the data generator in Java and it is available for download at
http://people.cs.kuleuven.be/~albrecht.zimmermann/software.html.

16

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 5 10 15 20 25

Nu
m

be
r o

f O
cc

ur
re

nc
es

Event

HMM-generated data

Figure 1: Event type distribution of data generated by the HMM generator

17

 1

 10

 100

 1000

 0 100 200 300 400 500 600 700 800

O
cc

ur
re

nc
e

co
un

ts
 (l

og
-s

ca
le

d)

Event types

Data as in Tatti, Cule ’11

Figure 2: Event type distribution of data generated using a very large alphabet

18

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 2 4 6 8 10 12 14 16 18

O
cc

ur
re

nc
e

Co
un

ts

Event types

Real-life data

Figure 3: Event type distribution in an first example data set of our real life
data

dominates, leading to an extremely large search space that would overwhelm
less sophisticated techniques.

Using uniform distributions is therefore useful when then goal is the gen-
eration of data that leads to challenging enumeration and search problems.
In addition, we assume that the General Motors data Laxman et al. worked
with showed characteristics that could be generated using uniform distributions.
However, these data sets are rather specific and not necessarily representative
of real life data. To illustrate this further, consider Figures 3 and 4, showing
examples of the event type distribution of real life data we have worked with,
which are looking rather different.

To show how one can use the generator to approximate real life data, we will
show here step-by-step how to arrive at data showing the same characteristics
as the one at our disposal. In a first step, we attempt to approximate the
distribution using uniform noise and episode distributions (Figure 5). This
data has been generated using uniform noise distribution, two source episodes
of length four, and a noise probability of 0.7, much higher than in the artificial
data we just discussed. The distribution has more in common with the real life
data than with the artificial data sets but does not fit yet.

Alternatively, we can use source episodes having different weights, but con-

19

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5 10 15 20 25

O
cc

ur
re

nc
e

Co
un

ts

Event types

Real-life data

Figure 4: Event type distribution in a second example data set of our real life
data

20

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 2 4 6 8 10 12 14 16

Nu
m

be
r o

f O
cc

ur
re

nc
es

Event types

Real life-like data 01

Figure 5: Approximated real life like event type distribution using uniformly
distributed noise, and source episodes having equal probability

21

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 2 4 6 8 10 12 14 16 18 20

Nu
m

be
r o

f O
cc

ur
re

nc
es

Event types

Real life-like data 02

Figure 6: Approximated real life like event type distribution using uniformly
distributed noise, and source episodes having different probability

tinue generating noise that is uniformly distributed. The event type distribution
of data generated in this way (n = 3, p = 0.2) can be seen in Figure 6. We
can see that the abrupt changes in event type occurrence counts that can be
observed in data that uses only one source episode, or several source episodes
of equal probability, are becoming less pronounced.

Finally, Figure 7 shows the event type distribution that occurs if we use
poisson-distributed noise instead of uniformly distributed noise. The shape of
the distribution of event types in this data resembles that of the real life data.
looks like the real life data at our proposal, supporting our design decisions.

5.2 Parameter effects on time delay distribution

The second characteristic that we can use to describe a data sequence compactly
is the distribution of the time delays between adjacent events in the data. Figure
8 shows the distribution of delays that results if we use the HMM generator with
g = 20.

Time delays are roughly uniformly distributed as per the parameter used
in generating them, and can therefore be considered uninformative, in keeping
with Laxman et al.’s view of time information. If, however, the time delays

22

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10 12 14 16 18 20

Nu
m

be
r o

f O
cc

ur
re

nc
es

Event types

Real life-like data 03

Figure 7: Approximated real life like event type distribution using Poisson dis-
tributed noise, and source episodes having different probability

23

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20

Nu
m

be
r o

f O
cc

ur
re

nc
es

Length of delay

HMM-generated data

Figure 8: HMM generator time delay distribution (unconstrained)

24

 0

 100

 200

 300

 400

 500

 0 5 10 15 20 25

Nu
m

be
r o

f O
cc

ur
re

nc
es

Length of delay

HMM-generated data

Figure 9: HMM generator time delay distribution (constrained)

of embedded episodes are independent of the amount and timestamps of noise
that occurred between episode events, i.e. if h is set to true, the time delay
distribution changes considerably (Figure 9), which can be expected to have an
effect when windows- or maximal-gap constraints are used in mining.

Once again, this difference in delay distributions will not affect all episode
mining approaches, in particularly if no or very lenient time constraints are
used. To be able to evaluate the effect such differences will have, however, it
is necessary to be able to specify different temporal behavior in the data. This
includes changing the distribution of time delay values. As Figure 10 shows, the
real life data we have at our disposal shows a time delay distribution that is far
different from a uniform distribution.3

By setting the delay distributions to normal distributions, m = 15, G = 300,
we can achieve a similar looking distribution, as can be seen in Figure 11. This
means that at this point, we can generate data with similar characteristics to
the real life data at our disposal.

3The figure shows only the first three peaks – the entire range of time stamps reaches into
the hundreds of thousands, with increasingly lower peaks up to 4500

25

 0

 50

 100

 150

 200

 250

 300

 350

236 298 299 300 301 302 596 597 598 599 600 601 602 898 899 900 901 902 903

Nu
m

be
r o

f O
cc

ur
re

nc
es

Time delays

Real life data 01

Figure 10: First section of the time delay distribution in the first example data
set of our real life data

26

 0

 50

 100

 150

 200

 250

 300

 350

 200 300 400 500 600 700 800 900 1000

Nu
m

be
r o

f O
cc

ur
re

nc
es

Length of delay

Real life data 01

Figure 11: Approximated real life like time delay distribution, using normally
distributed delays

5.3 Discussion

As we have shown so far, our generator is capable of recreating data with char-
acteristics similar to the ones we have observed in real life data. We have to
reiterate, however, that we cannot know whether the data at our disposal is
representative. Instead of declaring a generative model with weighted source
episodes, poisson-distributed noise, low noise probability, and normally dis-
tributed delays in the data the gold standard, our generator allows for a wide
range of different parameter settings. Benchmarking episode mining approaches
over a range of different settings will allow us to draw general conclusions about
the effectiveness of mining techniques in recovering the embedded patterns, as
well as about the mining behavior of different frequency count definitions.

There are several parameters whose effect will not be obvious from event
type and delay distributions but that can be expected to affect effectiveness
and efficiency of mining operations. Whether several source episodes are em-
bedded concurrently or successively, for instance, will not lead to changes in
the event type distribution but a mining algorithm that is confronted by several
overlapping regularities will have a harder time recovering them than if they
can be identified one after the other. This can be expected to be even more

27

pronounced when interleaving concurrent episodes. In a similar vein, increasing
failure probability will lower the occurrence count of event types from embed-
dings which in terms of event type distribution would look the same as a higher
noise probability.

Instead of choosing a single generative model and optimizing episode mining
techniques for it, we propose to use our generator to evaluate episode mining
methods on many different types of data to gain a robust understanding of the
strengths and limitations of different approaches.

6 Benchmark Experiments

The main contribution of our work lies in evaluating three state of the art
episode mining approaches under a variety of conditions to answer

Q1 Do episode mining approaches recover the patterns underlying the data
at all?

Q2 What are the effects of data characteristics on the effectiveness?

To the best of our knowledge, this is the first time that such a comparison
has been performed on such a scale and using data whose underlying patterns
were known, enabling the evaluation of the quality of episode mining results.

6.1 The Techniques

We compare three episode mining approaches against each other. The first
episode miner has been generously supplied to us by Christophe Rigotti. Addi-
tional information can be found at http://liris.cnrs.fr/~crigotti/dmt4sp.
html. The miner is a MinEpi miner for serial episodes. Result episodes can be
filtered using a maximal window size or maximal gap constraint and we evaluate
both temporal constraints, denoting the techniques by MinEpi (Window) and
MinEpi (Gap), respectively. The second miner encompasses the ClosEpi tech-
niques described in [27, 28] and has been supplied to us by Nikolaj Tatti. While
it mines general episodes, we limit ourselves to the subset of serial episodes since
the source episodes in our generator are effectively serial episodes. The tempo-
ral constraint is a maximum window size constraint. The third miner uses the
non-overlapping occurrence semantic and a maximal gap constraint, and can be
downloaded at http://people.cs.vt.edu/patnaik/software. We refer to it
as TDMiner.

The first two miners present us with computational bottlenecks: the MinEpi
miner for lenient constraint thresholds quickly generates such an excessive amount
of episodes that writing the entire result to disk is not possible, while the
ClosEpi technique is based on WinEpi counting, leading to the overcounting
problem described above. We have to take care in setting constraint thresholds
that allow us to perform a fair evaluation of both techniques in such a manner
that we neither bias the process too much towards nor against finding the source
episodes (for instance because the window is too narrow).

28

The first parameter that can distort the evaluation if chosen wrongly is the
window width. If we knew the noise probability, the length of source episodes
and the maximal and average time delay, we could define a window size that
will facilitate discovery of embedded episodes without being too lenient: wmax =
1

1−p ∗N ∗ g

Example 10 For a 4-element embedded episode, 0.2 noise probability and a
maximum time delay of 20, we can expect any 1

0.8 ∗ 4 = 5 events to contain a
full episode, which means that wmax = 100 should be enough to discover most
occurrences.

The problem is that while time delays can be gleaned from data, a practi-
tioner is unlikely to know noise probability and length of source episodes. We
can however make the assumption that p ≤ 0.95. The condition given in [17]
for the use of a frequency threshold as significance criterion is that p ≤ M

M+1 .
Since we adopt the default value of M = 20 for most of our experiments, we felt
this to be a useful assumption.

This significance threshold for an episode of length N ′ is T
N ′·M . One method

of addressing the combinatorial explosion of the MinEpi lies in restricting the
maximal length of episodes. We therefore restrict it to 6, filter episodes using
the support threshold, and fix the maximum window to wmax = 1

0.05 · 6 · gavg
for uniform noise delay values. For normally distributed delay values, we use
the most frequent delay value (equivalent to G): wmax = 1

0.05 · 6 ·G
Setting the maximum gap constraint is much easier, since we can simply use

the maximal delay value g or the largest frequent delay value M ·G, for uniform
and normal delay distribution, respectively. This is informed by our experiences
with real life data where setting the gap constraint to the maximum delay in
the data lead to millions of patterns. This gap constraint is used for MinEpi
(Gap) and TDMiner.

As explained in Section 2, wide windows have a direct effect on the frequency
of episodes in WinEpi like techniques. In terms of ClosEpi this meant that
mining with the window used for the MinEpi technique either ran for days or ran
out of memory. Therefore, we start with a narrower window for this technique,
wmax = 1

0.05 · gavg (1
0.05 · G), and a minimum frequency of tT , successively

reducing the minimum frequency. If the miner finds the source episode(s) for a
certain frequency at a certain window width, we choose this value as starting
value for the next data set, if not we double the window width and reiterate the
process. If the process runs out of memory for two data sets for a given setting
or does not find the source episodes within 24 hours, we terminate this setting.
Finally, since the miner mines closed episodes, we also accepted super-episodes
of source episodes if those are found earlier than the actual source episodes.

For each parameter setting, we mine episodes on 100 generated data sets,
using MinEpi (Window), MinEpi (Gap), and TDMiner. Due to the longer
running times of ClosEpi, we evaluated this technique on only 20 data sets for
each setting. The main question that we are attempting to evaluate is whether
and how well embedded episodes can be recovered. To this end we rank found

29

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60 70 80 90 100

Av
er

ag
e

ra
nk

 (b
y

su
pp

or
t)

of
 d

is
co

ve
re

d
so

ur
ce

 e
pi

so
de

s

Noise probability

Effects of varying p

MinEpi (Gap) on Standard
MinEpi (Gap) on Repeated
MinEpi (Gap) on Enforced
MinEpi (Gap) on Repeated+Enforced
TDMiner on Standard
TDMiner on Repeated

TDMiner on Enforced
TDMiner on Repeated+Enforced
ClosEpi on Standard
ClosEpi on Repeated
ClosEpi on Enforced
ClosEpi on Repeated+Enforced

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60 70 80 90 100

MinEpi (Window)

MinEpi on Standard
MinEpi on Repeated
MinEpi on Enforced
MinEpi on Repeated+Enforced

Figure 12: Average rank (by frequency) of source episodes among all discovered
episodes for varying noise probability

episodes by decreasing frequency and report the average rank of the source
episodes over all 100 data sets. This means that higher rank number is worse.

6.2 The Results for Uniformly Distributed Noise

In the first setting, we follow the work reported in [17] by assuming that both
noise and delay values are sampled from a uniform distribution.

6.2.1 Effects of noise probability

Following the work of [17], we expect noise probability to be an important
parameter. We therefore vary p over [0.05, 0.95], increment 0.05, while keeping
the other numerical parameters fixed at (n = 1, N = 4,M = 20, T = 5000, g =
20, o = 0).

If event types repeat in source episodes (and therefore in embedded episodes),
it should become easier to recover episodes since repeating multiples of noise
event types have a low probability. Also, if time constraints are enforced on
embedded episodes, this can be expected to counteract noise and make discovery
easier. We therefore evaluate all combinations of values for h and r, while

30

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 10 20 30 40 50 60 70 80 90 100

Si
ze

 o
f m

in
in

g
ou

tp
ut

Noise probability

Effects of varying p (Uniform)

MinEpi (Gap) on Standard
MinEpi (Gap) on Repeated
MinEpi (Gap) on Enforced
MinEpi (Gap) on Repeated+Enforced

TDMiner on Repeated+Enforced
TDMiner on Standard
TDMiner on Repeated
TDMiner on Enforced

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 10 20 30 40 50 60 70 80 90 100

MinEpi (Window)

Figure 13: Average sizes of mining result for varying noise probability

keeping the other boolean parameters fixed at false, leading to the four curves
shown in Figure 12.

The first thing to notice is the much worse performance of MinEpi (Win-
dow), as seen in the inset plot (whose y-axis is log-scaled). In the best case,
with low noise probability, the ranking of the actual source episode is close to
100, making it unlikely that a user could identify it. It can also be seen that
repetition of event types prevents the deterioration of the quality until very high
noise probabilities.

More interesting is that the other three approaches perform very similar. Es-
pecially when maximal time delays for source episodes are enforced, the found
episode is ranked within the top-10 until ClosEpi’s performance starts dete-
riorating at p = 0.65. For non-enforced time delays, the ranking is still in the
top-20 but the methods using a gap constraint do not recover the episode at all
anymore at certain noise probabilities while ClosEpi ranks it very high.

In this context, it is interesting to consider the number of episodes mined in
total by the respective approaches, shown in Figure 13. Using MinEpi (Win-
dow) leads to more than 1000 episodes for low noise probability and quickly
moves into the region of millions. When it comes to MinEpi)Gap) and TD-
Miner, we see that TDMiner consistently mines fewer patterns than MinEpi
(Gap) but as we have seen, the ranking of the found episode is very similar. This

31

 1

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10

Av
er

ag
e

ra
nk

 (b
y

su
pp

or
t)

of
 d

is
co

ve
re

d
so

ur
ce

 e
pi

so
de

s

M/N

Effects of varying M (Uniform noise)

MinEpi (Window) on Standard
MinEpi (Window) on Repeated
MinEpi (Gap) on Standard
MinEpi (Gap) on Repeated

TDMiner on Standard
TDMiner on Repeated
ClosEpi on Standard
ClosEpi on Repeated

Figure 14: Average rank (by frequency) of source episodes among all discovered
episodes for varying alphabet size

indicates that while using non-overlapping occurrence counts filters superfluous
episodes, it does not improve identifying the actual pattern. As in the case of
MinEpi (Window), repetition of event types reduces the output size. We did
not plot ClosEpi’s output sizes since it includes parallel episodes in the output
and depending on data characteristics this can lead to distortions. Its output
sizes are typically somewhat larger than those of the gap-using techniques but
much smaller than those of MinEpi (Window).

For the rest of the experiments with uniform noise we use p = 0.5, a value
where recovering embedded episodes is not too difficult yet. This is also the
highest p-value reported on in Laxman et al.’s work.

6.2.2 Effects of |E|N

In the SAT solving setting, the phenomenon of “phase transition” has been de-
scribed for the 3-SAT problem in propositional logic [23]. Depending on the
proportion of number of clauses to number of variables per clause, benchmark
problems pass from a region of easy satisfiability through a region of hard de-
cidability into a region of easy proof of unsatisfiability.

In a similar vein, we vary M in the interval [4, 40], increment 4, for fixed

32

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 2 3 4 5 6 7 8 9 10

Si
ze

 o
f m

in
in

g
ou

tp
ut

M/N

Effects of varying M (Uniform noise)

MinEpi (Window) on Standard
MinEpi (Window) on Repeated
MinEpi (Gap) on Standard

MinEpi (Gap) on Repeated
TDMiner on Standard
TDMiner on Repeated

Figure 15: Average sizes of mining result for varying alphabet size

(p = 0.5, n = 1, N = 4, T = 5000, g = 20, o = 0). Since we would expect the
repetition of event types in a source episode to make a difference, we perform
experiments for both values of r, while keeping the other boolean parameters
fixed to false, leading to the curves shown in Figures 14.

As expected, increasing M makes it easier for MinEpi (Window) to recover
the underlying episodes since drawing noise uniformly from a larger alphabet
decreases the appearance of regularity in the noise. The other three techniques
are not really influenced by the change in alphabet size, with the exception
that MinEpi (Gap) and TDMiner are stumped when M = 4 and there is
no repetition in the source episodes. While this could be seen as evidence
that mining closed strict episodes or using non-overlapping occurrences leads to
better results, the use of the MinEpi semantic and temporal gap constraints
seems to be as effective. In general, this plot can be considered a zoom into the
quality results of the probability experiment in the preceding section, making the
rankings more fine-grained, showing in more detail how the rankings compare
to each other.

Figure 15 also shows that while using non-overlapping occurrence counts
removes some spurious patterns, the advantage over the MinEpi (Gap) is min-
imal, especially compared to the large output sizes of using a maximal window
size constraint.

33

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60 70 80 90 100

Av
er

ag
e

ra
nk

 (b
y

su
pp

or
t)

of
 d

is
co

ve
re

d
so

ur
ce

 e
pi

so
de

s

Failure probability

Effects of varying o (Uniform noise)

MinEpi (Window) on Standard
MinEpi (Window) on Repeated

ClosEpi on Standard
ClosEpi on Repeated

 0 2
 4 6
 8 10 12 14 16 18

 0 10 20 30 40 50 60 70 80 90 100

MinEpi (Gap) & TDMiner

MinEpi (Gap) on Standard
MinEpi (Gap) on Repeated
TDMiner on Standard
TDMiner on Repeated

Figure 16: Average rank (by frequency) of source episodes among all discovered
episodes for varying failure probability

6.2.3 Effects of failure probability

In real life situations, it is possible that events that should be logged, such as
sensor readings or alarm codes, get lost, e.g. if the log file is not hosted directly
on the machine itself. The higher the probability that such a failure of logging
an event occurs, the more difficult it should be to recover the source episodes.

In the experiments reported here, we vary o in the interval [0, 0.95], incre-
ments 0.05, and keep the other parameters fixed at (p = 0.5, n = 1, N = 4,M =
20, g = 20, T = 5000). This is another setting in which we expect a repetition
of event types in source episodes to make a difference, hence both values of r
are evaluated while keeping the other boolean parameters fixed to false, leading
to the curves shown in Figure 16 and 17, respectively.

Similar to the results that we saw for varying noise probability, MinEpi
(Window) is rather robust to the effects of failure probability, as opposed to
ClosEpi, which quickly shows deteriorating ranks, or the other two techniques
that simply fail to recover source episodes at all once failure probability is larger
than 0.35. The reason for this can be seen in Figure 17, which shows that the
total number of episodes mined falls quickly for both techniques, quicker for
TDMiner than for MinEpi (Gap). We consider this experiment additional

34

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70 80 90 100

Si
ze

 o
f m

in
in

g
ou

tp
ut

Failure probability

Effects of varying o (Uniform noise)

MinEpi (Gap) on Standard
MinEpi (Gap) on Repeated

TDMiner on Standard
TDMiner on Repeated

 1e+06

 1e+07

 1e+08

 0 10 20 30 40 50 60 70 80 90 100

MinEpi (Window)

Standard
Repeated

Figure 17: Average sizes of mining result for varying failure probability

35

 1

 10

 100

 1000

 20 30 40 50 60 70 80 90 100

Av
er

ag
e

ra
nk

 (b
y

su
pp

or
t)

of
 d

is
co

ve
re

d
so

ur
ce

 e
pi

so
de

s

Maximum time delay

Effects of varying g (Uniform noise)

MinEpi (Window) on Standard
MinEpi (Window) on Enforced
MinEpi (Gap) on Standard
MinEpi (Gap) on Enforced

TDMiner on Standard
TDMiner on Enforced
ClosEpi on Standard
ClosEpi on Enforced

Figure 18: Average rank (by frequency) of source episodes among all discovered
episodes for varying maximal time delay

support for the assumption that while using non-overlapping occurrence counts
can remove some spurious patterns from the output, the parameter that makes
or breaks the success of those techniques is the temporal gap constraint, which
on the one hand helps filtering episodes but on the other can be vulnerable to
noise effects if temporal delays are not enforced in the data by the generative
process.

6.2.4 Effects of maximum time delay

To test this influence further, we next vary the maximal time delay in the data.
Increasing g leads to a larger interval [1, g] and therefore to a larger variability
of delays between consecutive events. In this experiment, we generate data
varying g in the range [20, 100], increment 10, holding other parameters fixed
at (p = 0.5, n = 1, N = 4,M = 20, T = 5000, o = 0).

Since we expect enforcement of a maximal time delay between event types of
an embedded episode to have an effect, we perform those experiments for both
values of h while keeping the other boolean parameters fixed to false, leading
to the curves shown in Figure 18

Changing the maximal time delay has remarkable little effect on the rank-

36

 20

 30

 40

 50

 60

 70

 80

 90

 20 30 40 50 60 70 80 90 100

Si
ze

 o
f m

in
in

g
ou

tp
ut

Maximum time delay

Effects of varying g (Uniform noise)

MinEpi (Gap) on Standard
MinEpi (Gap) on Enforced

TDMiner on Standard
TDMiner on Enforced

 1e+06

 1e+07

 20 30 40 50 60 70 80 90 100

MinEpi (Window)

Standard
Enforced

Figure 19: Average sizes of mining result for varying maximal time delay

37

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 1.5 2 2.5 3 3.5 4 4.5 5

Av
er

ag
e

ra
nk

 (b
y

su
pp

or
t)

of
 d

is
co

ve
re

d
so

ur
ce

 e
pi

so
de

s

Number of source episodes

Effects of varying n (Uniform noise)

MinEpi (Gap) on Standard, Enforced
MinEpi (Gap) on Interleaved, Enforced
MinEpi (Gap) on Shared, Enforced
MinEpi (Gap) on Shared, Interleaved, Enforced
TDMiner on Standard, Enforced
TDMiner on Interleaved, Enforced
TDMiner on Shared, Enforced
TDMiner on Shared, Interleaved, Enforced

 100

 1000

 10000

 100000

 1 1.5 2 2.5 3 3.5 4 4.5 5

MinEpi (Window) on Enforced

Standard
Interleaved

Shared
Shared, Interleaved

Figure 20: Average rank (by frequency) of source episodes among all discovered
episodes for varying number of source episodes

ings for the different methods, probably due to the time-agnostic nature of the
MinEpi, and ClosEpi semantics, and the effect of the gap constraints that
effectively “stretch” with maximal time delays in the data. Figure 19 contin-
ues the trend of TDMiner mining fewer episodes than MinEpi (Gap) and
we see that enforcing the maximal time delay leads to more mined patterns,
even though the embedded source episode is actually better ranked than in the
non-enforced case.

6.2.5 Effects of number of embedded episodes and episode interac-
tion

While the experimental results so far indicate that MinEpi (Gap) is equal to
TDMiner in terms of recovering the underlying patterns, all of the experiments
involved only a single source episode and no interleaving, meaning that any
advantage of non-overlapping occurrence counts cannot fully materialize. In this
set of experiments, we therefore embed additional source episodes and evaluate
the effect that different types of interaction among them have on the miners’
results.

The clearest effect of embedding more episodes in the same amount of data

38

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 1 1.5 2 2.5 3 3.5 4 4.5 5

Si
ze

 o
f m

in
in

g
ou

tp
ut

Number of source episodes

Effects of varying n (Uniform noise)

MinEpi (Gap) on Standard, Enforced
MinEpi (Gap) on Interleaved, Enforced
MinEpi (Gap) on Shared, Enforced
MinEpi (Gap) on Shared, Interleaved, Enforced
TDMiner on Standard, Enforced
TDMiner on Interleaved, Enforced
TDMiner on Shared, Enforced
TDMiner on Shared, Interleaved, Enforced

 1e+06

 1e+07

 1e+08

 2 2.5 3 3.5 4 4.5 5

MinEpi (Window) on Enforced

Figure 21: Average sizes of mining result for varying number of source episodes

will be that each episode occurs less often. To evaluate these effects, we vary
n in the range [1, 5], while keeping the other parameters fixed at (p = 0.5, N =
4,M = 20, g = 20, T = 5000, o = 0). All episodes have the same probability and
are embedded concurrently. Even if episodes are non-interleaved, shared event
types among episodes can make episode discovery harder, an effect that will be
exacerbated if different instances of the same source episode can be interleaved
in the data. Hence, we generate data for all combinations of values of s and
i, while keeping the other boolean values fixed, leading to the curves shown in
Figure 20. In addition to averaging the rank of episodes over all 100 data sets,
we averaged over the number of source episodes to give a concise picture. Since
each episode has an equal probability of being chosen for embedding at each
step, we felt that this was a justified choice.

Even for n = 2, the ClosEpi technique did not recover embedded episodes
successfully within 24 hours. We therefore do not show this technique in the
comparison. Furthermore, as was to be expected given the nature of the tempo-
ral gap constraint, MinEpi (Gap) and TDMiner were not capable of effectively
recovering embedded episodes if the maximal time delays were not enforced. We
therefore report all results on enforced time delays.

It comes as a surprise that for up to four source episodes the results of
TDMiner on interleaved episodes are worst – setting aside the predictably high

39

rankings achieved by MinEpi (Window). Generally speaking, both TDMiner
and MinEpi (Gap) achieve very similar quality, and both techniques are not
thrown off too much by shared event types and interleaving. But even on this
setting which would be expected to favor non-overlapping occurrence counts,
using MinEpi with a temporal gap constraint performs well. It has also to be
said that an end user might have to find out which episodes out of thirty to
forty are actually meaningful and which are artifacts of the mining process, a
non-trivial task.

It is at this point that we have to raise the fact that our results differ
markedly from the ones reported in [17]. When interleaving a 3- and a 4-event
episode at p = 0.5 in data of size T = 5000 that work reports that the source
episodes were found at positions 1 and 3 in the frequency-ranked list by their
technique and at 1 and 6 by a windows-based miner, a result that we cannot
replicate using the TDMiner or MinEpi (Window) technique even for a single
source episode. We can only speculate at this point but a possible explanation
could be that the authors inadvertently set a window width threshold that fit
the actual noise probability, thus avoiding spurious episodes.

It is interesting to see in Figure 21 that after an initially relatively large
output size, more source episodes quickly lead to manageable sizes, except when
using MinEpi (Window). On the practitioner’s side this could mean that when
one sees few episodes being mined by TDMiner or MinEpi (Gap), several
phenomena are actually buried in the data.

6.3 The Results for Poisson-distributed noise

Uniformly distributed noise assumes that the generating phenomena are truly
random while just about any natural or cultural process can be expected to
exhibit some kind of pattern. We therefore perform the experiments of the pre-
ceding setting again, using Poisson-distributed noise this time. We would expect
Poisson-distributed noise to make it harder to recover underlying episodes since
the higher probability for some noise events would give an appearance of regu-
larity where none exists.

6.3.1 Effects of noise probability

The experiments varying the noise probability support this expectation, as Fig-
ure 22 shows: compared to Figure 12, the ranking deteriorates earlier. On the
other hand, MinEpi (Gap) and TDMiner can recover episodes from data on
which maximal delays are not delayed somewhat longer. It is also interesting
to see that the number of episodes mined by MinEpi (Gap) and TDMiner
decreases slower or even increases for higher noise probabilities when maximal
delays are enforced, as Figure 23 shows – the higher noise probability also creates
more opportunities for noise to appear like regular phenomena.

40

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40 50 60 70 80 90 100

Av
er

ag
e

ra
nk

 (b
y

su
pp

or
t)

of
 d

is
co

ve
re

d
so

ur
ce

 e
pi

so
de

s

Noise probability

Effects of varying p (Poisson)

MinEpi (Gap) on Standard
MinEpi (Gap) on Repeated
MinEpi (Gap) on Enforced
MinEpi (Gap) on Repeated+Enforced
TDMiner on Standard
TDMiner on Repeated

TDMiner on Enforced
TDMiner on Repeated+Enforced
ClosEpi on Standard
ClosEpi on Repeated
ClosEpi on Enforced
ClosEpi on Repeated+Enforced

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 10 20 30 40 50 60 70 80 90 100

MinEpi (Window)

Standard
Repeated
Enforced
Repeated+Enforced

Figure 22: Average rank (by frequency) of source episodes among all discovered
episodes for varying noise probability

41

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 10 20 30 40 50 60 70 80 90 100

Si
ze

 o
f m

in
in

g
ou

tp
ut

Noise probability

Effects of varying p (Poisson)

MinEpi (Gap) on Standard
MinEpi (Gap) on Repeated
MinEpi (Gap) on Enforced
MinEpi (Gap) on Repeated+Enforced

TDMiner on Repeated+Enforced
TDMiner on Standard
TDMiner on Repeated
TDMiner on Enforced

 1000

 10000

 100000

 1e+06

 1e+07

 0 10 20 30 40 50 60 70 80 90 100

MinEpi (Window)

Figure 23: Average sizes of mining result for varying noise probability

42

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10

Av
er

ag
e

ra
nk

 (b
y

su
pp

or
t)

of
 d

is
co

ve
re

d
so

ur
ce

 e
pi

so
de

s

M/N

Effects of varying M (Poisson noise)

MinEpi (Window) on Standard
MinEpi (Window) on Repeated
MinEpi (Gap) on Standard
MinEpi (Gap) on Repeated

TDMiner on Standard
TDMiner on Repeated
ClosEpi on Standard
ClosEpi on Standard

Figure 24: Average rank (by frequency) of source episodes among all discovered
episodes for varying alphabet size

43

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 2 3 4 5 6 7 8 9 10

Si
ze

 o
f m

in
in

g
ou

tp
ut

M/N

Effects of varying M (Poisson noise)

MinEpi (Window) on Standard
MinEpi (Window) on Repeated
MinEpi (Gap) on Standard

MinEpi (Gap) on Repeated
TDMiner on Standard
TDMiner on Repeated

Figure 25: Average sizes of mining result for varying alphabet size

6.3.2 Varying M

This is also borne out by the results when the size of the alphabet is varied: while
the average rankings for MinEpi (Gap) and TDMiner were slightly larger than
10 for uniformly distributed noise and did not vary much for different values of
M, ranks rise to 20 for those two techniques when M is increased for Poisson-
distributed noise (Figure 24). Connected to this is a slight increase in the
number of episodes returned in total by the different techniques, seen in Figure
25.

6.3.3 Varying o

Changing the failure probability has more pronounced effects for Poisson-distributed
noise as well, at least for MinEpi (both temporal constraints), and TDMiner,
as seen in Figure 26. ClosEpi seems less affected by this but on the other hand
is not able to recover any episodes at all anymore at a lower failure probability
than for uniform noise. Poisson-distributed noise also leads to a generally larger
output size for MinEpi (Gap) and TDMiner (Figure 27).

44

 10

 100

 1000

 10000

 100000

 1e+06

 0 10 20 30 40 50 60 70 80 90 100

Av
er

ag
e

ra
nk

 (b
y

su
pp

or
t)

of
 d

is
co

ve
re

d
so

ur
ce

 e
pi

so
de

s

Failure probability

Effects of varying o (Poisson noise)

MinEpi (Window) on Standard
MinEpi (Window) on Repeated

ClosEpi on Standard
ClosEpi on Repeated

 0
 5

 10
 15
 20
 25

 0 10 20 30 40 50 60 70 80 90 100

MinEpi (Gap) & TDMiner

MinEpi (Gap) on Standard
MinEpi (Gap) on Repeated

TDMiner on Standard
TDMiner on Repeated

Figure 26: Average rank (by frequency) of source episodes among all discovered
episodes for varying failure probability

45

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 10 20 30 40 50 60 70 80 90 100

Si
ze

 o
f m

in
in

g
ou

tp
ut

Failure probability

Effects of varying o (Poisson noise)

MinEpi (Gap) on Standard
MinEpi (Gap) on Repeated

TDMiner on Standard
TDMiner on Repeated

 1e+06

 1e+07

 0 10 20 30 40 50 60 70 80 90 100

MinEpi (Window)

Standard
Repeated

Figure 27: Average sizes of mining result for varying failure probability

46

 1

 10

 100

 1000

 20 30 40 50 60 70 80 90 100

Av
er

ag
e

ra
nk

 (b
y

su
pp

or
t)

of
 d

is
co

ve
re

d
so

ur
ce

 e
pi

so
de

s

Maximum time delay

Effects of varying g (Poisson noise)

MinEpi (Window) on Standard
MinEpi (Window) on Enforced
MinEpi (Gap) on Standard
MinEpi (Gap) on Enforced

TDMiner on Standard
TDMiner on Enforced
ClosEpi on Standard
ClosEpi on Enforced

Figure 28: Average rank (by frequency) of source episodes among all discovered
episodes for varying maximal time delay

47

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 20 30 40 50 60 70 80 90 100

Si
ze

 o
f m

in
in

g
ou

tp
ut

Maximum time delay

Effects of varying o (Poisson noise)

MinEpi (Gap) on Standard
MinEpi (Gap) on Enforced

TDMiner on Standard
TDMiner on Enforced

 1e+06

 1e+07

 20 30 40 50 60 70 80 90 100

MinEpi (Window)

Standard
Enforced

Figure 29: Average sizes of mining result for varying maximal time delay

6.3.4 Varying g

When the maximal time delay is varied, the most interesting result is actually
found in Figure 29 since the number of episodes that are being mined by MinEpi
(Gap) and TDMiner on data on which this delay is enforced effectively doubles.
While the average rank also increases, this increase is only slight (Figure 28).

6.3.5 Effects of number of embedded episodes and episode interac-
tion

These results let us expect that mining several source episodes will also be
harder but as Figure 30 shows, this is not the case. Especially TDMiner
attains somewhat better results, while for MinEpi (Gap) there is some change
regarding what are the harder settings. This is also reflected in the output sizes
(Figure 31) that do not change much between the two noise distributions.

6.4 Discussion

The data used for evaluation in the preceding sections is artificial in the sense
that we generated it based on a priori assumptions, without data sources whose
characteristics we tried to recreate. As we have shown, however, changing data

48

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 1.5 2 2.5 3 3.5 4 4.5 5

Av
er

ag
e

ra
nk

 (b
y

su
pp

or
t)

of
 d

is
co

ve
re

d
so

ur
ce

 e
pi

so
de

s

Number of source episodes

Effects of varying n (Poisson noise)

MinEpi (Gap) on Standard, Enforced
MinEpi (Gap) on Interleaved, Enforced
MinEpi (Gap) on Shared, Enforced
MinEpi (Gap) on Shared, Interleaved, Enforced
TDMiner on Standard, Enforced
TDMiner on Interleaved, Enforced
TDMiner on Shared, Enforced
TDMiner on Shared, Interleaved, Enforced

 100

 1000

 10000

 100000

 1 1.5 2 2.5 3 3.5 4 4.5 5

MinEpi (Window) on Enforced

Standard
Interleaved

Shared
Shared, Interleaved

Figure 30: Average rank (by frequency) of source episodes among all discovered
episodes for varying number of source episodes

49

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 1 1.5 2 2.5 3 3.5 4 4.5 5

Si
ze

 o
f m

in
in

g
ou

tp
ut

Number of source episodes

Effects of varying n (Poisson noise)

MinEpi (Gap) on Standard, Enforced
MinEpi (Gap) on Interleaved, Enforced
MinEpi (Gap) on Shared, Enforced
MinEpi (Gap) on Shared, Interleaved, Enforced
TDMiner on Standard, Enforced
TDMiner on Interleaved, Enforced
TDMiner on Shared, Enforced
TDMiner on Shared, Interleaved, Enforced

 1e+06

 1e+07

 1e+08

 1 1.5 2 2.5 3 3.5 4 4.5 5

MinEpi (Window) on Enforced

Figure 31: Average sizes of mining result for varying number of source episodes

50

characteristics can have a profound effect on the effectiveness of episode mining
approaches. Depending on the value of different parameters that can describe
data, a problem can become markedly harder or easier, and a priori assump-
tions can be proved wrong, as the results for failure probability, and time delay
enforcement show. What we found generally surprising is the relatively weak
overall performance of MinEpi (Window) mining using frequency as a signif-
icance criterion (as proposed in [17]). The best rank is typically still in the
hundreds and would therefore likely be missed by a practitioner sifting through
the output. Generally speaking, the performance of an episode mining technique
seems to depend more on the temporal constraint used than on the occurrence
semantic used:

• In an effort not to bias the mining process, we ran MinEpi (Window) with
rather large window sizes and the results are typically unsatisfactory.

• For ClosEpi, on the other hand, we effectively report the results for the
tightest window for which embedded episodes can be recovered, and the
results are much better. It is rather difficult to set this maximum window
size constraint a priori, however, and systematically exploring different
settings systematically can lead to infeasible running times, as we have
seen.

• MinEpi (Gap) and TDMiner use different occurrence semantics but both
use temporal gap constraints and their results look consistently very sim-
ilar (and better than the other two techniques’).

Part of the motivation of this work lies in developing benchmark criteria that
can be used to evaluate future proposals for episode mining techniques. The
challenge to future research in the community would lie in the harder settings.
In terms of translating our results into benchmarking problems, data on which
episode mining techniques are evaluated, should thus show at least some of the
following characteristics:

• A noise probability of at least 40%,

• A ratio M
N that is not too large since otherwise noise events cannot give

the appearance of regularity,

• A relatively high failure probability, especially for MinEpi-like techniques,

• Non-enforced time delays since enforcement makes the setting much easier
for temporal gap constraints,

• Several episodes, ideally sharing event types and/or having interleaved
embeddings.

As a side-note, repeating event types in source episodes make mining settings
somewhat easier and should therefore be avoided in benchmark problems.

51

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60 70 80 90 100

Av
er

ag
e

ra
nk

 (b
y

su
pp

or
t)

of
 s

ou
rc

e
ep

is
od

es

Failure probability

Effect of varying o on recovery of concurrently embedded, differently likely source episodes

Most likely episode (enforced)
2nd most likely episode (enforced)
3rd most likely episode (enforced)

Most likely episode
2nd most likely episode
3rd most likely episode

Figure 32: Average rank (by frequency) of source episodes of different proba-
bility on real life like data for different failure probability, mined using MinEpi
(Window)

6.5 The Results for real life like settings

The second part of our motivation was to use artificial data as a stand-in for
real life data to gain some guidance about the expected quality of mining results
on such data. We showed in Section 5 how we can use our data generator to
generate data mimicking the characteristics of the real life data at our disposal.

The parameters that we found to give rise to such characteristics were
the following: using several source episodes (n = 3), low noise probability
(p ∈ {0.1, . . . , 0.3}), source episodes having different probabilities (W = true),
Poisson-distributed noise, and time delays samples from 15 normal distributions
with enforced maximal time delays. These data might not be representative of
all real life phenomena but we consider it interesting to consider the performance
of the different techniques on them.

6.5.1 Effects of failure probability

A frequent topic in consultations with our industry partners was that the logging
of events cannot be expected to be reliable, motivating us to introduce the

52

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
g
e
 r

a
n
k

(b
y

su
p
p
o
rt

)
o
f
so

u
rc

e
 e

p
is

o
d
e
s

Failure probability

Effect of varying o on recovery of concurrently embedded, differently likely source episodes

1st, p=0.1
2nd, p=0.1
3rd, p=0.1

1st (enforced), p=0.1
2nd (enforced), p=0.1
3rd (enforced), p=0.1

Figure 33: Average rank (by frequency) of source episodes of different proba-
bility on real life like data for different failure probability, mined using MinEpi
(Gap)

failure probability parameter. In a first setting, we therefore evaluate the effects
of different failure probabilities for noise probabilities 0.1, 0.2, 0.3, respectively.
Figures 32, 33, and 34 show the average rank of the each of the three source
episodes for MinEpi (Window), MinEpi (Gap), and TDMiner for p = 0.1,
respectively. The settings for p = 0.2 and p = 0.3 were very similar, with
the only difference being that a higher noise probability prevented recovering
episodes earlier. ClosEpi did not manage to recover any of the source episodes
within 24 hours and we therefore do not show any results for this technique.
Since these episodes have different probabilities, we cannot simply average over
their ranks and we therefore show each episode’s rank individually, denoting
with “1st” the most likely episode, with “2nd” the second most likely etc. Given
the impact that enforcing the maximal time delay has on MinEpi (Gap) and
TDMiner, and the fact that we do not know whether such enforcement is
realistic or not, we evaluated both settings.

As could by now unfortunately be expected, Figure 32 shows that using
MinEpi with a maximum window size constraint would not be effective in re-
covering underlying episodes. The situation looks better for MinEpi (Gap)
(Figure 33) and TDMiner (Figure 34), at least when time delays for source
episodes are enforced. At least the most likely episode has a good chance of
being recovered and ranked well. The graphs look counterintuitive since higher

53

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
g
e
 r

a
n
k

(b
y

su
p
p
o
rt

)
o
f
so

u
rc

e
 e

p
is

o
d
e
s

Failure probability

Effect of varying o on recovery of concurrently embedded, differently likely source episodes

1st, p=0.1
2nd, p=0.1
3rd, p=0.1

1st (enforced), p=0.1
2nd (enforced), p=0.1
3rd (enforced), p=0.1

Figure 34: Average rank (by frequency) of source episodes of different probabil-
ity on real life like data for different failure probability, mined using TDMiner

failure probabilities improve the ranking of recovered episodes. This is in a sense
an artifact of the data generation: since the probabilities for source episodes are
chosen at random, the least likely episode can be more likely in some generated
data sets than in others. For higher failure probabilities, unlikely episodes are
not recovered at all, and the averaged ranking therefore reflects only relatively
likely, and therefor well-ranked, episodes. This also means that improvements
in ranking, e.g. o = 0.4 for the most likely episode on time-delay enforced data
for TDMiner, do not indicate that it has in fact become easier to recover this
episode. Quite contrary, it indicates that recovering has become impossible on
some data sets.

Figure 35 shows how the total output sizes compare and we see once again
that the two temporal gap constrained techniques have very similar character-
istics.

Generally speaking, these results indicate that as long as the failure proba-
bility is relatively low, it might be possible to recover the most likely and second
most likely phenomena in the data, if there is actually a time delay enforcement
mechanism at play in the data.

54

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 10 20 30 40 50 60 70 80 90 100

Si
ze

 o
f m

in
in

g
ou

tp
ut

Failure probability

Effect of varying o on recovery of concurrently embedded, differently likely source episodes

MinEpi (Window), enforced, p=0.1
MinEpi (Window), p=0.1

MinEpi(Gap), p=0.1

MinEpi(Gap), enforced, p=0.1
TDMiner, p=0.1

TDMiner, enforced, p=0.1

Figure 35: Average sizes of mining result of source episodes of different proba-
bility on real life like data for different failure probability

55

 10

 100

 1000

 10000

 100000

 10 15 20 25 30

Av
er

ag
e

ra
nk

 (b
y

su
pp

or
t)

of
 d

is
co

ve
re

d
so

ur
ce

 e
pi

so
de

s

Noise probability

Effect of varying p on recovery of successively embedded, differently likely source episodes

Most likely episode
2nd most likely episode

3rd most likely episode

Figure 36: Average rank (by frequency) of successively embedded source
episodes of different probability on real life like data for different noise proba-
bility, mined using MinEpi (Window)

56

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 10 15 20 25 30

Av
er

ag
e

ra
nk

 (b
y

su
pp

or
t)

of
 d

is
co

ve
re

d
so

ur
ce

 e
pi

so
de

s

Noise probability

Effect of varying p on recovery of successively embedded, differently likely source episodes

Most likely episode
2nd most likely episode
3rd most likely episode

Most likely episode (enforced)
2nd most likely episode (enforced)
3rd most likely episode (enforced)

Figure 37: Average rank (by frequency) of successively embedded source
episodes of different probability on real life like data for different noise proba-
bility, mined using MinEpi (Gap)

6.5.2 Effects of successively versus concurrently embedded source
episodes

It is possible that the system generating the data, e.g. an industrial machine,
goes through different stages during its life cycle, generating different patterns
in each one. Since this was a possibility that was mentioned in the context of
the project, we therefore also generate data in which data is not concurrently
but successively embedded. We vary the noise probability over the full range of
settings for which we observed data characteristics matching the real life data.
The probability of an episode appearing in the data is still the same as in the
preceding experiment but the fact that each episode occurs on its own should
make recovery easier.

This assumption is supported by Figure 36, which shows that the most likely
episode is ranked much better than for the concurrent setting when mined using
MinEpi (Window). In fact, this is the first time in the experiments that this
technique has ranked a recovered episode low enough that it might be useful.
Unfortunately, however, the ranking is still relatively high. This also means that
it would be difficult to leverage the gained knowledge, e.g. by identifying the

57

 0

 50

 100

 150

 200

 250

 300

 350

 10 15 20 25 30

Av
er

ag
e

ra
nk

 (b
y

su
pp

or
t)

of
 d

is
co

ve
re

d
so

ur
ce

 e
pi

so
de

s

Noise probability

Effect of varying p on recovery of successively embedded, differently likely source episodes

Most likely episode
2nd most likely episode
3rd most likely episode

Most likely episode (enforced)
2nd most likely episode (enforced)
3rd most likely episode (enforced)

Figure 38: Average rank (by frequency) of successively embedded source
episodes of different probability on real life like data for different noise proba-
bility, mined using TDMiner

“main” state via its representative episode, and detecting deviations from it.
Figures 37 and 38 paint a more positive picture w.r.t. the most likely episode
which is ranked low enough by both MinEpi (Gap) and TDMiner that it would
be useful. Already the second most likely episode, however, could be problematic
to identify. Figure 39, finally, shows that the total output size is larger than
for concurrent episodes, making the task of identifying the meaningful episodes
harder.

6.5.3 Discussion

The experiments on data showing characteristics similar to real life ones are in
line with the multi-episode experiments we have performed before: while the
gap-constrained techniques are capable of recovering some source episodes, in
many cases they also return quite a few spurious patterns mixed in. Especially if
some patterns are less likely (and therefore less strongly expressed), it is possible
that they are not recovered at all or buried in so many other episodes that they
will be hard to identify.

58

 100

 200

 300

 400

 500

 600

 700

 800

 900

 10 15 20 25 30

Si
ze

 o
f m

in
in

g
ou

tp
ut

Noise probability

Effect of varying p on output size for successively embedded, differently likely source episodes

MinEpi (Gap)
MinEpi (Gap), Enforced

TDMiner
TDMiner, Enforced

 10000

 100000

 10 15 20 25 30

MinEpi (Window)

Figure 39: Average sizes of mining result of successively embedded source
episodes of different probability on real life like data for different noise proba-
bility

59

7 Summary and Conclusions

Unsupervised pattern mining faces a challenge when evaluating methods pro-
posed in the literature since for most real life data the underlying phenomena
are unknown. The challenge is even greater for frequent episode mining where
not even a common body of real life data sets exists on which all techniques
can be evaluated. This means that it is actually unknown how exactly different
methods compare to each other in practice and whether any of them are capable
of finding underlying patterns at all.

To alleviate this problem, we have proposed to generate artificial data for
evaluating episode mining approaches. Artificial data has an advantage over
real life data sets in that the embedded patterns are known and can therefore
be used to evaluate how successful episode mining approaches are in recovering
them. Furthermore, if such a data generator is flexible enough to generate data
with different characteristics, mining techniques can be benchmarked much more
comprehensively than has been done before.

Our first contribution to addressing this problem consists of describing and
implementing such a data generator. Starting from a number of real life obser-
vations, we have proposed a number of numerical and nominal parameters that
can be manipulated to generated a wide range of different data sets. We pro-
ceeded to show that the data used in prior work has very specific characteristics
that, while useful for illustrating those techniques’ merits, has little in common
with real life data at our disposal. We have then gone on to demonstrate how
the different parameters of our generator can be adjusted to generate data that
mimics characteristics of that real life data.

Our second contribution consists of using our data generator to evaluate the
performance of four episode mining techniques. To the best of our knowledge,
is this not only the first time that several such techniques have been compared
on a large number of data sets, it is furthermore the first time that episode
mining techniques are evaluated w.r.t. whether they are able to recover patterns
embedded in the data. We varied a number of parameters to generate data with
different noise probabilities, time delays, or number of embedded patterns, to
name just a few. In addition, we performed experiments on real life like data
we generated. We find that for several of the settings a single episode can
be recovered relatively well, but also that the problem becomes much more
challenging once several source episodes are involved. Interestingly, much of the
success of different methods seems to hinge on the temporal constraints used.
A maximal window size constraint is difficult to decide on and large window
sizes can lead to weak results, while exploring different settings increases the
computational cost of episode mining significantly. Maximal gap constraints,
however, can be relatively easily derived from the data and when combined
with the MinEpi semantic lead to similarly good results as gap constraints and
the non-overlapping occurrence semantic.

If we use the results on the real life like data as guidance in exploring results
on the actual real life data, we have to draw the conclusion that it is unlikely
that all phenomena that occur in the data can be identified using the output

60

of frequent episode mining. This statement comes with a caveat though: the
setting is one in which several episodes are embedded in the data, and the output
episodes were ranked using support in the data under the different semantics.
If episode mining research gives rise to and adopts new measures for identifying
the significance of mined episodes, and develops methods for dealing with sets
of episodes, the good results achieved for single source episodes should become
stronger and settings with several source episodes could be tackled successfully.

We do not consider our proposed generator or the benchmarking experiments
we performed as the final step but instead as a beginning. Even though the
parameters and their values seem justified to us given a priori considerations
and the real life data at our disposal, it is likely that other researchers work with
data sets that our generator cannot model yet, meaning that it would need to be
extended. In particular, we will continue to add additional distributions for noise
events, time delays, event types in source episodes, and source episode weights
to the generator. In a similar vein, research in episode mining will continue
and new techniques and measures will be proposed. We have shown that the
lack of a collection of publicly available data does not have to stand in the
way of comprehensively evaluating episode mining approaches. We expect that
future work in the field will include more extensive evaluations and comparisons,
especially when it comes to mining sets of episodes, so that potential users can
find guidance in how to use those potential powerful techniques.

Acknowledgments

I would like to thank Jan Lemeire and Stijn Meganck for providing the motiva-
tion for this work. I am also grateful to my colleagues Tias Guns and Siegfried
Nijssens who read and commented on my work and those anonymous reviewers
whose constructive feedback help me improve both research and text.

References

[1] Proceedings of the Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, July 23-26, 2002, Edmonton, Al-
berta, Canada. ACM, 2002.

[2] Rakesh Agrawal and Ramakrishan Srikant. Fast algorithms for mining
association rules in large databases. In Proceedings of the 20th International
Conference on Very Large Databases, pages 487–499, Santiago de Chile,
Chile, September 1994. Morgan Kaufmann.

[3] Mikhail J. Atallah, Robert Gwadera, and Wojciech Szpankowski. Detection
of significant sets of episodes in event sequences. In ICDM, pages 3–10.
IEEE Computer Society, 2004.

61

[4] Roberto J. Bayardo Jr., Bart Goethals, and Mohammed Javeed Zaki, ed-
itors. FIMI ’04, Proceedings of the IEEE ICDM Workshop on Frequent
Itemset Mining Implementations, Brighton, UK, November 1, 2004, 2004.

[5] Tijl De Bie. Explicit probabilistic models for databases and networks.
CoRR, abs/0906.5148, 2009.

[6] Albert Bifet and Ricard Gavaldà. Adaptive xml tree classification on evolv-
ing data streams. In Wray L. Buntine, Marko Grobelnik, Dunja Mladenic,
and John Shawe-Taylor, editors, ECML/PKDD (1), volume 5781 of Lecture
Notes in Computer Science, pages 147–162. Springer, 2009.

[7] C.L. Blake and C.J. Merz. UCI repository of machine learning databases,
1998.

[8] Hendrik Blockeel and Joaquin Vanschoren. Experiment databases: Towards
an improved experimental methodology in machine learning. In Joost N.
Kok, Jacek Koronacki, Ramon López de Mántaras, Stan Matwin, Dunja
Mladenic, and Andrzej Skowron, editors, PKDD, volume 4702 of Lecture
Notes in Computer Science, pages 6–17. Springer, 2007.

[9] Gemma Casas-Garriga. Discovering unbounded episodes in sequential data.
In Nada Lavrac, Dragan Gamberger, Hendrik Blockeel, and Ljupco Todor-
ovski, editors, PKDD, volume 2838 of Lecture Notes in Computer Science,
pages 83–94. Springer, 2003.

[10] Deepayan Chakrabarti and Christos Faloutsos. Graph mining: Laws, gen-
erators, and algorithms. ACM Comput. Surv., 38(1), 2006.

[11] Darya Chudova and Padhraic Smyth. Pattern discovery in sequences under
a markov assumption. In KDD [1], pages 153–162.

[12] Bart Goethals and Mohammed Javeed Zaki, editors. FIMI ’03, Frequent
Itemset Mining Implementations, Proceedings of the ICDM 2003 Work-
shop on Frequent Itemset Mining Implementations, 19 December 2003, Mel-
bourne, Florida, USA, volume 90 of CEUR Workshop Proceedings. CEUR-
WS.org, 2003.

[13] Bart Goethals and Mohammed Javeed Zaki. Advances in frequent item-
set mining implementations: report on fimi’03. SIGKDD Explorations,
6(1):109–117, 2004.

[14] E. F. Vogel J. J. Down. A plant-wide industrial process control problem.
Computers & Chemical Engineering, 17(3):245–255, March 1993.

[15] E. Keogh, Q. Zhu, B. Hu, Y. Hao, X. Xi, L. Wei, and C. A. Ratanama-
hatana. The ucr time series classification/clustering homepage, 2011.

[16] Srivatsan Laxman and P. S. Sastry. A survey of temporal data mining.
Sadhana-academy Proceedings in Engineering Sciences, 31:173–198, April
2006.

62

[17] Srivatsan Laxman, P. S. Sastry, and K. P. Unnikrishnan. Discovering fre-
quent episodes and learning hidden markov models: A formal connection.
IEEE Trans. Knowl. Data Eng., 17(11):1505–1517, 2005.

[18] H. Mannila and H. Toivonen. Discovering frequent episodes in sequences. In
Proceedings of the First International Conference on Knowledge Discovery
and Data Mining (KDD’95), pages 210–215. AAAI Press, 1995.

[19] H. Mannila and H. Toivonen. Discovering generalized episodes using mini-
mal occurrences. In Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining (KDD’96), pages 146–151. AAAI
Press, 1996.

[20] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Discovery of
frequent episodes in event sequences. Data Min. Knowl. Discov., 1(3):259–
289, 1997.

[21] Nicolas Méger and Christophe Rigotti. Constraint-based mining of episode
rules and optimal window sizes. In Jean-François Boulicaut, Floriana Es-
posito, Fosca Giannotti, and Dino Pedreschi, editors, PKDD, volume 3202
of Lecture Notes in Computer Science, pages 313–324. Springer, 2004.

[22] Abdullah Mueen, Eamonn J. Keogh, Qiang Zhu, Sydney Cash, and
M. Brandon Westover. Exact discovery of time series motifs. In SDM,
pages 473–484. SIAM, 2009.

[23] David M. Pennock and Quentin F. Stout. Exploiting a theory of phase
transitions in three-satisfiability problems. In AAAI/IAAI, Vol. 1, pages
253–258, 1996.

[24] Jeffrey C. Schlimmer and Richard H. Granger. Incremental learning from
noisy data. Machine Learning, 1(3):317–354, 1986.

[25] W. Nick Street and YongSeog Kim. A streaming ensemble algorithm (sea)
for large-scale classification. In KDD, pages 377–382, 2001.

[26] Nikolaj Tatti. Significance of episodes based on minimal windows. In Wei
Wang, Hillol Kargupta, Sanjay Ranka, Philip S. Yu, and Xindong Wu,
editors, ICDM, pages 513–522. IEEE Computer Society, 2009.

[27] Nikolaj Tatti and Boris Cule. Mining closed strict episodes. In Geoffrey I.
Webb, Bing Liu, Chengqi Zhang, Dimitrios Gunopulos, and Xindong Wu,
editors, ICDM, pages 501–510. IEEE Computer Society, 2010.

[28] Nikolaj Tatti and Boris Cule. Mining closed episodes with simultaneous
events. In Chid Apté, Joydeep Ghosh, and Padhraic Smyth, editors, KDD,
pages 1172–1180. ACM, 2011.

[29] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Satzilla:
Portfolio-based algorithm selection for sat. J. Artif. Intell. Res. (JAIR),
32:565–606, 2008.

63

[30] Mohammed Javeed Zaki. Efficiently mining frequent trees in a forest. In
KDD [1], pages 71–80.

[31] Zijian Zheng, Ron Kohavi, and Llew Mason. Real world performance of
association rule algorithms. In KDD, pages 401–406, 2001.

64

