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Abstract. We introduce the problem of cluster-grouping and show
that it can be considered a subtask in several important data mining
tasks, such as subgroup discovery, mining correlated patterns, clustering
and classification. The algorithm CG for solving cluster-grouping prob-
lems is then introduced, and it is incorporated as a component in several
existing and novel algorithms for tackling subgroup discovery, cluster-
ing and classification. The resulting systems are empirically compared
to state-of-the-art systems such as CN2, CBA, Ripper, Autoclass and
CobWeb. The results indicate that the CG algorithm can be useful as a
generic local pattern mining component in a wide variety of data mining
and machine learning algorithms.
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1 Introduction

The representation of conjunctive rules occupies a central position in the field
of symbolic machine learning and data mining. It is used to represent local
patterns in the data and sets of such rules form the output of a wide variety of
systems, tackling diverse tasks ranging from association rule mining, correlated
pattern mining, subgroup discovery, rule learning to conceptual clustering. [1,
34,28,12,38] These systems all possess a local pattern mining or rule learning
component, which raises the question as to whether there exists a unified or uni-
versal local pattern mining approach that can be used across these systems. The
key contribution of the present paper is that we answer this question positively,
by first, introducing the task of cluster-grouping, based on an extension of the
work of [34], and second, proposing an algorithm, CG, employing upper-bound
pruning techniques for exhaustively solving this task. The algorithm guarantees
to find the best pattern (or rule) with regard to a correlation measure (e.g. x?),
and forms an alternative to the often heuristic (beam-search) methods employed
in machine learning.

As evidence for the wide applicability of the CG algorithm, we use it together
with different wrappers to tackle the tasks of correlated pattern mining, subgroup
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discovery, classification and conceptual clustering. The resulting systems are
then empirically evaluated on a large number of UCI data sets [4] and compared
to state-of-the-art machine learning and data mining systems such as CN2-
SD, RIPPER, CBA, and COBWEB [28,12,30,16]. This also results in number
of novel systems. Especially interesting are the novel CBC system, for realizing
associative classification using correlated patterns rather than pure association
rules as CBA [30] and CMAR [29] do, and the novel CG-CLUS system, based
on a divisive decision-tree like algorithm, for realizing conceptual clustering. The
tests in the CG-CLUS trees are based on conjunctive descriptions. The results
of the experiments provide evidence for the key claims of this work — that the
cluster-grouping task and CG algorithm can be useful as a component across a
wide variety of data mining and machine learning algorithms. An additional and
new finding is that using the CG algorithm instead of the common beam-search
not only leads to good performance, but that the exhaustive method is at least
as efficient as heuristic ones.

We proceed as follows. In the next section we introduce the concept of local
pattern mining. In Section 3, we present the underlying principles of CG, the
algorithm we propose for addressing the local pattern mining task. In Section 4,
we introduce the general mechanism for combining local patterns into a global
model. Additionally, we show how different data mining tasks can be cast in
this description, describe influential systems based on existing paradigms and
experimentally compare CG-based systems to existing solutions. In Section 5
we refer to related work before we conclude in the last section.

2 Local Pattern Mining

Throughout the paper, we use attribute-value representations, and hence, employ
conjunctions of attribute-value pairs to describe patterns. More formally, let A =
{A1, ..., Ag} be a tuple of attributes and V[A] = {v, ...,v,} the domain of A. A
tuple (vl,...,v?) with v’ € V[A;] is called an instance. A multiset £ = {e1,...,e,}
of instances is called a data set.

Definition 1 (Condition) A condition | is an attribute-value-pair A = v
with v € V[A]. An instance (v1,...,v4) is covered by a condition l of the form
A; =viff v, = v.

Definition 2 (Pattern) A pattern p is a conjunction of conditions, Iy A...Nl;.
An instance e is covered by p iff it is covered by all its conditions.

Such patterns are called local patterns if they describe instances that show an
unexpectedly high density of certain attribute values compared to a background
model. We define certain attributes A7 € A as target attributes and define target
conditions. In the case of cluster-grouping, the background model is supplied by
the observed distributions of these target conditions.

We consider patterns to be interesting if the distribution of the target con-
ditions deviates unexpectedly from the background distribution in the subset



Table 1. Contingency table for p w.r.t. {AT}

I AT = | AT = v I
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specified by the pattern. The unexpectedness is quantified by setting a thresh-
old on the values of certain measures with regard to the pattern considered. To
quantify the quality of a given pattern, different interestingness measures can
be used, such as accuracy or confidence, or correlation measures, such as x2,
Information Gain, and Category Utility. Accuracy measures the purity of the
described population w.r.t. a given target condition, while correlation measures
quantify the deviation between assumed distributions of target conditions and
the actual distribution in the subset of instances defined by the patterns.

Definition 3 (Support) For a pattern p, we define
sup(p) = |{e € € | e is covered by p}|
the support of p. The support of a pattern w.r.t. a single target AT = vy is
sup(p AN AT = wvy) = |{e € £ | e is covered by p and AT = v, }|

To facilitate the use of correlation measures, occurrence counts are often
organized in contingency tables. A contingency table for a pattern and a single
binary-valued target attribute is shown in Table 1.

We use the following notation to refer to occurrence counts of patterns:

Definition 4 (Occurrence Counts) For a given pattern p, target attributes
AT ... AT and a given data set & we define:

n=|E|, m; = sup(A;?F =), y:r = sup[p/\(A;fF =un)), y; = sup[p/\ﬁ(A;TF =v1)]

Note that the sum of the cells in a row (column) is equal to the margins of the
table, that is the rightmost (down-most) entry in a row (column). Correlation
measures compare for a given cell the product of the corresponding margins
to the cell count, thus comparing ezpected (under an independence assumption
between patterns and target attribute values) to observed frequency, and score
the difference. Consider for instance the upper left cell of Table 1: the value of
the cell itself, the observed value, is y+. The coverage of the pattern on the entire
data is y* 4 y~, as seen on the upper right margin, and the size of AT = v; is
m1, as seen in the lower left margin. This leads to a straight-forward expected
value for the upper left cell: ms - (y* 4+ y~)/n. To compare these two values, one
can for instance subtract them from each other, squared so that both higher and
lower than expected behavior is treated symmetrically: (y;" —m1(y; + vy )/n)?.



In the x? measure this term would then be discounted with the expected value,
giving a complete term of:

(i —ma(yy +y1)/n)?
mi(yy +yr)/n

Table 2. Pseudo-Contingency table for p w.r.t {A], AT}

|| AT =y | AT =y H AT = | AT =y ||
p ur = v = y3 = v = sup(p) = y7 +u;
suplp A (AT = v1)][suplp A (AT = v2)]|| suplp A (A3 = v1)]|suplp A (AT =w)l||  =yd +ys
-p|| ma—y = n—mi—y; = me —y; = n—ms—y2 = sup(—p)

sup(=p A AT = v1)|sup(=p A AT = va) ||sup(=p A AT = v1)|sup(-p A A3 = vo)|| n— (yi +y1)
my = n—m = ma = n—mo = n
sup(AT =) sup(AT = wv2) sup(AY = v1) sup(AY = vs) = €|

Increasing the number of involved target attributes usually leads to an in-
crease of dimension of the contingency table to capture all dependencies among
the conditions. Our focus is on the effect that pattern presence has on the AT
the target attributes defining the background model. This means that we can
disregard dependencies between those target attributes, decreasing the computa-
tional complexity of mining processes by instead using pseudo-contingency tables
such as the one in Table 2. The main difference with regard to a regular high-
dimensional contingency table, a so-called multi-way table, is that the margin of
a row is not equal to the sum of row-cells anymore. A correlation measure still
compares the product of the margins to the cell count.

Definition 5 (Stamp Point [34]) The stamp point of a pattern p w.r.t. a
data set £, and a set of target attributes {AT,. .., Ag}, is the tuple of occurrence

counts (Y, Yy s Y Y7 )

Consider an interestingness measure such as accuracy, x2, Category Util-
ity, Information Gain, or Weighted Relative Accuracy defined on a pseudo-
contingency table. Since m and the m; are constant for a given data set, a
given interestingness measure o(p) is a function of 2d variables

o:N¥ - R,

mapping the stamp point sp(p) to a real number.

We can now introduce the cluster-grouping problem, which — as we shall argue
— can be used in a wide variety of data mining and machine learning problems.



Definition 6 (Cluster-Grouping Problem)
Given:

a pattern language L, defining the attribute-value pairs to be used in patterns,
— a data set &,

— an interestingness measure o,

— an interestingness threshold T and/or maximum number of patterns k, and
— a set of target attributes {AT,... AT}

Find:
A k-theory

Thi(L,0,E,7,{A],...,A]}) = arg, max{o(sp(p)) 2 7}

The k-theory consists of the k best patterns expressible in L according to o w.r.t.
the background model induced by the AT on data set €.

An example for such a task would be the inner loop of a rule learner perform-
ing sequential covering: For k = 1, and accuracy as the interestingness measure
o, the most accurate rule on £ that can be formulated in £ will be mined. The
target attribute in this case is the class label. After removing covered instances,
another 1-theory Thy(L, acc, &, 7,{C}) is mined, and this continues until all in-
stances are covered.

In the next section, we propose a branch-and-bound algorithm in the mold
of the family of optimization algorithms from [43] for solving cluster-grouping
problems that is guaranteed to find optimal solutions. This contrasts with some
heuristic approaches to solving instances of the cluster-grouping problem (such
as beam-search) that are sometimes encountered in machine learning, cf. [10,
16].

3 Upper Bound on Convex Correlation Measures

Based on the convexity of correlation measures it is possible to calculate an
upper bound on the future value of o for specializations of a given pattern.
This upper bound can be used to prune away parts of the search space known
not to produce interesting solutions, and to focus the search on promising parts
of the search space. The main insight underlying this technique is that convex
functions attain their maximal values at the extreme points of their domain. To
our knowledge, this idea was introduced by Morishita et al. [34].

3.1 Pattern behavior in coverage space

Coverage spaces, introduced in [22], can be used to visualize a pattern’s or (col-
lection of patterns’) coverage behavior. To this end, a pattern is represented by
the number of positives P = y* and negatives N = y~ it covers (its stamp
point w.r.t. a single target attribute), as shown in Figure 1(a). The most general



pattern is situated at the upper right corner (mi,n — my), since all instances
are covered. When a pattern is specialized (i.e. extended with additional condi-
tions), its stamp point sp(p) = (yT,y~) moves to the left and/or downwards, as
its coverage decreases.

The diagonal in the diagram corresponds to a proportion of covered positives
and covered negatives that is equal to that of the entire data set. At this diagonal,
correlation measures evaluate to 0. The farther away from the diagonal a stamp
point lies, the more significant it is w.r.t. the background distribution. For a given
pattern p with stamp point sp(p) = (y™,y~), the point in coverage space that
can be reached by any specialization p’ and is farthest away from the diagonal,
and therefore most significant, is either (y™,0) or (0,y~), the extreme points.

Theorem 1. The upper bound of a specialization of pattern p w.r.t. a convex
correlation measure o is

ubs(p) = max{o(y™,0),0(0,y7)}

0,n —my mi,n —m 0,n —my my,n—my

P1 - e P

N N

0 my, 0,0 my, 0

(a) Corresponding to value of convex function (b) Corresponding to non-convex case

Fig. 1. Coverage space with isometric lines

A pattern evaluation measure induces so-called isometrics in coverage space
— curves that connect all coverage points having the same value for the measure.
Consider the coverage space shown in Figure 1(a). The two elliptic lines corre-
spond to a x? threshold. A point between one of the isometrics and the diagonal
refers to a pattern that does not pass the threshold, such as the patterns shown
in the figure. The right pattern, p;, has two upper bounds that lie above the
threshold, which implies that it is worthy of specialization. The left pattern’s
(p2) upper bounds both lie inside the isometrics and therefore no specialization
of this pattern can be better than the threshold value, and thus the pattern (and
all its specializations) should be pruned away.

3.2 Convexity

Upper bound pruning only works correctly for conver functions.



Definition 7 (Convexity) A function f : D — R is convez iff D C R? is a
conver set andVx1,xe € DA € [0,1] : f(Az1+(1=N)x2) > Af(x1)+(1=X) f(x2).

This means that, given two points x1,x2, all points = that lie on the line
connecting z; and xo must have a value f(z) that lies on or below the line con-
necting f(x1) and f(x2). Isometrics are just projections of a three-dimensional
graph’s area onto the two-dimensional plane denoting its domain. If “islands”
and “dents” exist, such as the ones shown in Figure 1(b), the upper bound tech-
nique cannot be utilized since a future point might lie in one of the “islands”, thus
attaining a higher value than the threshold without lying outside the curves. At
the same time, the existence of “islands” and “dents” corresponds to a violation
of the convexity criterion.

Functions such as x2, WRAcc, Information Gain, and Category Utility are
convex. For the proofs of the convexity of x? and Information Gain we refer the
reader to [34], while the proofs for WRAcc and Category Utility can be found in
Appendix A.

3.3 Extension to Arbitrary Dimensions

If the mining process considers two or more independent target attributes, as we
do, the interestingness measure is additive, meaning that the correlation measure
can be evaluated separately for each of the independent target attributes, those
finally summed up and averaged and/or normalized.

Definition 8 A function o over patterns p with sp(p) = (y1," ,y1, ¥, v;)
over attributes A; (the stamp point) is additive if

d
o(p, A) = oyl yr -y ug) = > ot )
=1

for some constant c.
Since a sum of convex functions is a convex function itself, and a possible
averaging factor ¢ has no effect on convexity, the upper bound technique can

be used on the entire sum. However, computing an upper bound it not so easy.
There is a naive upper bound that simply maximizes each summand:

d
ubg(p) = ¢ max{o(y;",0),0(0,4;)}
i=1
As shown in Table 2, however, Vi : y; + y;” = sup(p), which in turn leads to

z=sup(p) =y +y; =3 +ys =...=yl +y;

This constraint is potentially violated when each summand is maximized inde-
pendently of the others.
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Fig. 2. Coverage spaces for two target attributes

To illustrate this effect, consider the left-hand side of Figure 2. Shown are
overlaid coverage spaces for two different target attributes, with a pattern’s
coverage denoted by a dark circle. Note that both the upper right corners of the
coverage spaces and the dark circles lie on an isometric with a 135 degree slope —
all points lying on this line have the same sum m; + (n—m;) (the size-isometric),
y:r +y; (the coverage-isometric), respectively. The maximal values, visualized by
being farthest from the background-distribution-diagonal, that can be reached
by specializations of the pattern w.r.t. the two target attributes are denoted by
maz; and mazs (denoted by maximum-isometric), respectively. The equal-sum-
isometrics passing through those two values are not the same however, meaning
that the respective maximum values would be reached by specializations with
different coverage.

Given that the calculation of a non-naive upper bound for an arbitrary num-
ber of target attributes is crucial to the success of our technique, we will give in
the next paragraphs an algorithmic description of how to calculate this upper
bound, use this algorithm and the isometrics to give an intuition as to why the
upper bound is correct and tighter and finally prove its tighter evaluation.

As mentioned above, the main problem with the naive technique lies in the
fact that conflicting support isometrics could be induced by extreme points max-
imizing o independently for each target attribute.

The upper bound calculation we use, shown as Algorithm 1, instead calculates
an upper bound for every target attribute separately under a support constraint

- + — + —
U’bl - + = ma’f = {U(yi,max7 yi,min)’ U(yi,mirw yi,mam)}
Y maz TYi,min =Y, min TYi,maz =%

and then maximizes the sum of these upper bounds over a range of possible
supports of specializations of the current pattern

d
uby, (p) = max Z ub;
=1

1<z<sup(p)—14
1=



Algorithm 1 Multi-dimensional upper bound calculation

Given: current pattern p, corresponding stamp point <yl+7 Ypsee- ,yéﬂ y;)
Return: upper bound on ¢(p’), with p’ a specialization of p

ub =0
for 1 <z < sup(p) — 1 do
for 1 <i<ddo
y'rJrﬁm:v = min{:m szr}7 y;nn =
y';m:v = min{:m y;}7 y;tnn =
ub; = max{g(y;tmxv y;un)7 O—(y;ru'n7 y;baac)}
end for
ub = max{ub, 7, ub;}
end for
return ub

+
T = Ymax
T — y;’baz

To do this, the algorithm iterates over all possible supports of specializations,
which lie between 1 (0 would correspond to a pattern covering nothing) and
the current pattern support—1 (since identical support corresponds to a more
specific pattern with the same informative value) - the outermost for-loop in
Algorithm 1.

As can be seen in the right-hand side of Figure 2, such an isometric can cor-
respond to a maximal value of ¢ for one of the attributes while corresponding to
a non-maximal value for another one. The isometric can also correspond to non-
maximal values for both attributes (the nonmax-nonmax-isometric). What still
holds for the purpose of maximizing ¢ for a single attribute is that those points
should be extreme points (furthest away from the background-distribution diag-
onal). To achieve this, two points (y.\ ..,y . ), (yt. y- ) are created. Since
the support of a pattern, and the current value of y™ both impose upper bounds
on the maximal value of v . the smaller of the two is chosen. Additionally,
since the isometric is specified, v’ ., +,.:,, have to equal z, the specified support.
Therefore, y, . is set to x — .\, ... Analogous reasoning holds for (yt. |y, .

o is evaluated on both of these extreme points for an attribute, and the
larger value chosen. Finally, the values for all attributes are added up and in this
way an upper bound for the score of a hypothetical specialization of support x
calculated. By maximizing over all possible future supports, an upper bound for
any possible specialization of the current pattern is derived.

The preceding discussion explains why this is a correct upper bound: max-
imizing the contribution to o for each target attribute under a certain support
constraint, and doing this for all possible future supports ensures that no future
score can exceed this bound. What is left to show is that this bound is tighter
than the naive one.

As mentioned in Section 3, convex functions attain their maximal values at
the extreme points of their domain. Given the domain induced on a coverage
space by y;, y;, it must therefore hold that for all (y;fmm, Yi min)s (y;)rmm, Yi maz)



defined according to Algorithm 1

ubs = max{0 (Y, nazs Yi.min)> O Wi mins Yimaa)} < max{o(y;",0),0(0,y; )}
This in turn implies
d

d
max Y ub; <Y max{o(yS,0),0(0,y;)}
=1

1<z< —1
Se<sup(p)—1

3.4 The CG-Algorithm

In this section we present an algorithm for solving the cluster-grouping problem,
called CG. For reasons of readability we show a version for finding patterns
having a single highest score value (k = 1).

Algorithm 2 The CG algorithm that computes Thy (L, 0,&,7,{AT,..., AL}) =
arg, maxpec{o(sp(p)) > 7}.
£ - data set, o - correlation measure, Tyser - user-defined minimum threshold on o
1: P:={T},7:= Tuser, S : =10
2: while P # () do
Pmyp 1= arg maxpe p{ub(p)}
C = p(Pmp)
for all ¢; € C do
compute sp(c;), calculate o(c;)
ubo(c;i) := UpperBound(sp(c;))
7:=max{7,0(c;)}
9:  end for
10: S:={seS|o(s)=7}U{ceC|oa(c)=1}
11:  S:=8\{seS |3 e S:s <sAsp(s)=sp(s)}
122 P:={pe P|ubs(p) >7U{ceC|ubs(c) >}
13: end while
14: return S

The cluster-grouping algorithm CG (listed as Algorithm 2) is essentially a
branch-and-bound algorithm along the lines of the family of optimization al-
gorithms proposed in [43]. Starting from the most general pattern (denoted by
T), in each iteration the pattern p,,, € P (the set of potential solutions) with
the highest upper bound is specialized (line 3). We use an optimal refinement
operator p:

Definition 9 (Optimal Refinement Operator) Let L be a set of conditions,
=< a total order on the literals in L, T € R.

p(p)={pAli|l; € Lyubs(l;)) >T,Vlep: 1 <1;}

is an optimal refinement operator.

10



The optimality of the refinement operator p ensures that each pattern will
be created and evaluated only once during a run of the algorithm. The pattern p
to be refined has an upper bound above the threshold since it would have been
pruned otherwise. Since only conditions are added whose upper bound exceeds
the threshold, the resulting specializations may have a score that exceeds or
matches the current threshold.

The created specializations are then evaluated on the data set and the o-
scores and upper bounds are calculated (lines 6 and 7). If possible, the threshold
is raised (line 8). The solution set S is composed of all patterns which have
a score matching the threshold 7 (line 10). In Algorithm 2, this threshold is
either the best score seen so far or a user-defined threshold, whichever is larger.
Specializations whose scores match the current threshold are added to the set
of solutions S only if the solution set does not already include a generalization
having the same stamp point. The rationale behind this is that literals not
included in the more general pattern do not change the coverage and therefore do
not add information. The algorithm can be easily modified so that k& best patterns
are found, by using the kth-best score as threshold, in which case solutions have
to exceed, not match, the threshold. Finally, the set of promising patterns P is
pruned using the threshold and all specializations whose upper bound exceeds 7
are added (lines 11 and 12).

///\

thy Ak {}  {Lb {Y {ly {l} {l} {l}
c=3 0=2 0=3 0=2 0c=4 0=4 0c=2 0=2 o0=0
ub=6 ub=7 ub=5 ub=2 ub=5 wb=2 ub=1 wb=2 ub==6

AN

{li, o} {li, e} {lo, 13} {lo,l5} {la,lo}
c=4 o0=4 o0=5 0c=2 o0=3
ub=5 ub=6 ub=5 ub=5 ub==06

Fig. 3. Enumeration tree induced by CG

As an illustration of CG, consider Figure 3. After refining the empty set, all
single-literal patterns are evaluated and their score and upper bound calculated.
The highest ¢ is underlined using a solid line, while upper bounds that exceed it
are underlined using a dashed line. The highest score encountered after the first
refinement is 4 and the corresponding best solution so far {l5} (ties are broken
lexicographically). The only literals that can be part of a solution exceeding this
threshold are 1, l2, [3, 15 and lg. Since l3 has the highest upper bound of these, it

11



is selected for refinement. One of the new solutions, {l2,l3}, does have a better
score than the current threshold and is selected as new best pattern. Increasing
the threshold further reduces the literals that can be used for refinement to Iy, lo
and lg. Since we aim for general patterns, I is refined next, using lg since [y
has already been refined. The upper bound of {l1,l9} which is 5, invalidates the
more optimistic upper bounds of [y, /s and lg and the algorithm terminates.

4 CG as component of several data mining systems

In the previous sections we have introduced the cluster-grouping task and out-
lined the CG algorithm for solving it. Cluster-grouping is typically not a goal
in itself but rather — as we shall argue — an important step for building global
models. A key contribution of our work is that we show that CG can be a use-
ful component for machine learning and data mining systems tackling a wide
variety of tasks such as correlated pattern mining, subgroup discovery, classifi-
cation, and clustering. Many such systems can be decomposed into two main
components:

— A local pattern mining algorithm to find patterns describing/ predicting the
behavior of a subset of the data

— A control structure, or “wrapper”, that, depending on the local miner’s re-
sult, manipulates the data and/or restarts the local mining process, possibly
with a different parameter setting

In this section, we will show that the cluster-grouping task and CG algorithm
can be used as the local pattern mining component together with a wrapper for
correlated pattern mining, subgroup discovery, classification and clustering. The
main conceptual difference to the task of Sese et al. lies in the fact that we view
the algorithm as a component in a complete system, unlike their stand-alone
formulation. Especially in the case of classification and subgroup discovery, we
replace heuristic local pattern mining components by our exhaustive alternative,
which is a novel approach to the best of our knowledge.

The resulting systems will also be empirically evaluated and compared to
state-of-the-art systems. This empirical comparison is meant to provide insight
into both the effectiveness and the efficiency of the CG algorithm for the above
mentioned tasks. Whereas the criterion for effectiveness depends on the specific
task considered, the efficiency of the algorithms will be measured by the number
of patterns evaluated during the search, rather than cpu-time or used memory,
because these values are implementation-dependent. We now turn our atten-
tion to the different subtasks: correlated pattern mining, subgroup discovery,
classification and clustering.

4.1 Correlated Pattern Mining

Problem Description Correlated pattern mining [6,34] is motivated by the
observation that association rules with very high confidence may still carry only

12



little information. If every single person shopping in a grocery store bought bread
and every second person bought milk then an association rule milk = bread
would have a support of 0.5 and a confidence of 1.0 but still be useless. There-
fore, using a correlation measure, grounded in statistical principles, rather than
frequency will typically result in more interesting relationships. Reformulated,
while classical association rule mining assumes frequent patterns to be interest-
ing, correlated pattern mining looks for local patterns for which the distribution
of the target item significantly deviates from the distribution in the entire data
set.

Correlated Pattern Mining Using Cluster-Grouping Morishita and Sese
[34] model correlated pattern mining in the following way — the attribute of
interest is restricted to a single, fixed item and the quality of patterns is quanti-
fied using the y2-statistic to compare expected and observed occurrence counts.
Correlated pattern mining can be modeled as a cluster-grouping problem with:

L=A{I=true|I eI}, withZ={h,...,I,}, the set of items, and VI € T :
V[I] = {false,true},

£ a transaction database,

— o a (convex) correlation measure such as x?,

— Tuser the user threshold, and

— A, = {Ip)

Inclusion in the actual solution set is based either on whether a pattern
belongs to the k best patterns according to the correlation measure used or on
a p-value for the measure. This gives it a sounder statistical interpretation than
the setting of a support threshold.

Due to the large number of patterns returned, some can be expected to
be considered significant by the measure, however. Without a correction, for
instance Bonferroni correction, the result set will therefore include false positives.
This problem exists also for a low minimum support threshold, however. In
addition, minimum support can be expected to wrongly reject patterns that will
be accepted by an uncorrected significance test. Furthermore, techniques exist
for efficiently performing such corrections [44], and could be incorporated into
CG. The “wrapper” for this approach actually only performs a single call to CG
with certain parameters.

Algorithm 3 The correlated pattern mining algorithm
S = Thoo ([:, X2, g, Tuser, IO)

Denoting the local pattern mining step in Algorithm 3 for correlated pattern
mining the generic notation Thi(L,0,E, Tuser, {AT, ..., AT}) from Definition 6
is used, where the target attribute has been restricted to the item Iy. Further-
more, S denotes the set of computed solutions.
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Experimental Evaluation Since the patterns mined by Morishita and Sese
are special cases of cluster-grouping patterns and the pruning technique is based
on the same principles, it follows that the CG algorithm is applicable to cor-
related pattern mining and also that it will produce exactly the same solutions
as Morishita and Sese’s approach. We therefore include no experiments on this
task.

4.2 Subgroup Discovery

Problem Description In subgroup discovery, the goal is to find groups of
instances in the data that show unexpected behavior with regard to a target
attribute. For instance, a higher than expected frequency of lung cancer, as
compared to the overall population, in people living in areas with high air pol-
lution or a lower than expected number of cardiac arrests in persons whose diet
is rich in olive oil. Again, subgroup discovery can be viewed as an attempt to
find patterns for which the distribution of values for a given target attribute
deviates from their distribution in a different context (e.g. the entire data set or
a particular subset [26]).

Subgroup Discovery using Cluster-Grouping Lavraé et al. [28] show how
a rule learning algorithm such as CN2 [10], used together with a function mea-
suring positive correlation such as Weighted Relative Accuracy (WRAcc)[27],
can be employed to find subgroups. The resulting system is CN2-SD, which we
will use here as a representative subgroup discovery system. The local pattern
mining component of CN2-SD can be modeled as a cluster-grouping problem
with:

—L={A=v|Ae A\ {A},v e V[A]}
— & a data set

— o is Weighted Relative Accuracy

- k=1

- At = {At = Ui}

Given that WRACC is an asymmetrical measure that rewards higher-than-
expected occurrence of a value, and penalizes lower-than-expected occurrence,
the target attributes for subgroup discovery are derived by turning the actual
target attribute into a binary one denoting presence of a value.

The System CN2-SD performs beam search within a “wrapper” that re-
weights instances that have already been covered to reduce their importance.
The complete mining system is shown in Algorithm 4, where 7 = —o0 implies
that the k best patterns, regardless of their score, are included.

The local pattern mining step in CG-SD that computes Th; is based on an
incomplete search strategy, beam search, which does not guarantee that the k
best patterns are found. However, this step can also be performed by CG, we
call the resulting algorithm CG-SD.
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Algorithm 4 The general weighted covering algorithm
S=0
Ve; € € : weight(e;) =1
repeat
Find Thi(L,WRAcc, E, —o0, Ar = v;)
for all e; € E do
if e; is covered by Th; then
weight(e;) = (th(e) +1)"
end if
end for
if Thi ¢ S then
S=SUTh
end if
until Ve; € € : weight(e;) < 1

1

Table 3. Comparison for induction of a single subgroup per class value,
setting A. The first column lists the data set, the last columns the number of candidate
pattern evaluated by CG-SD, corresponding to 100%, columns 2-4 the corresponding
percentage-values for different settings of CN2-SD.

Dataset CN2-SD5o|CN2-SD1o9|CN2-SDs5 CG-SD
Balance-2-Class 644.00%| 436.00%| 278.00%| 50 (100%)
Breast-W 3443.04%| 1791.14%| 948.10%| 79 (100%)
Breast-W-equal 3061.36%| 1609.09%| 856.82%| 88 (100%)
Car 1722.22%| 898.08%| 481.61%| 261 (100%)
Colic 10569.26%| 5336.49%| 2723.65%| 296 (100%)
Colic-equal 10699.64%| 5394.31%| 2772.95%| 281 (100%)
Credit-G 2106.84%| 1062.73%| 541.76%(1492 (100%)
Credit-G-equal 2036.56%| 1028.06%| 523.89% 1436 (100%)
Diabetes 2445.24%| 1329.76%| 705.95%| 84 (100%)
Diabetes-equal 1014.78%| 550.25%| 291.63%| 203 (100%)
Heart-H 3682.01%| 1876.19%| 976.72%| 189 (100%)
Heart-Statlog 2639.30%| 1342.36%| 696.07%| 229 (100%)
Heart-Statlog-equal | 2416.27%| 1227.38%| 637.70%| 252 (100%)
Krkopt 1463.92%|  765.52%| 413.20%|2697 (100%)
Mfeat-Morpho 2090.53%| 1244.44%| 672.43%| 243 (100%)
Mfeat-Morpho-equal| 2086.42%| 1249.38%| 676.95%| 243 (100%)
Nursery 3283.92%| 1692.60%| 888.75%| 311 (100%)
Segment 7784.20%| 3949.24%)| 2015.46%| 595 (100%)
Tic-Tac-Toe 1717.58%|  879.69%| 461.33%| 256 (100%)
Voting Record 7201.55%| 3655.04%| 1883.72%| 129 (100%)
Z.00 13206.91%| 6714.63%| 3400.96%|1982 (100%)
Pendigits 5523.76%| 2800.83%| 1313.24%| 846 (100%)
Mushroom 11928.74%| 5997.13%| 3074.71%| 522 (100%)
Average 4155.07%| 2119.10%] 1090.17%
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Experimental Evaluation To compare the complete search method of CG-
SD with the heuristic approach of CN2-SD, we set up experiments to answer
the following questions:

Q1 Does CN2-SD find all subgroups found by CG-SD?
Q2 Is CN2-SD more efficient than CG-SD?

The evaluation is performed in two settings:

1) without the wrapper, where we search for a single top-scoring subgroup, and
2) with the wrapper, where we look for an incrementally constructed set of
subgroups.

To answer the questions posed above, we perform experiments on a number
of UCI data sets, which were selected such that a large range of data cardinality
and dimensionality were covered. The implementation of CG is currently limited
to nominal data. Therefore, numerical attributes have been discretized for the
experiments, and we only chose data with discrete classes. Two unsupervised
discretization approaches were chosen. In the naive version, the mean value of
an attribute is computed and taken as threshold, leading to two nominal values.
For some data sets this has the effect that one of the two bins contains far more
instances than the other one. For these sets, we also chose the threshold in such
a way that two roughly equally distributed nominal values result. These data
sets are denoted by a trailing “-equal” in the name.

Ezxperimental Setting The experimental settings are the following:

— The attribute of interest is the class label
— Beam sizes for CN2-SD are 5,10,20!
— o is WRAcc

Results Tables 3 and 4 report the number of candidate patterns evaluated by
CG-SD — which corresponds to 100% — and the corresponding percentage-values
for different settings of CN2-SD. Additionally, the tables specify whether CG-
SD found a subgroup description, i.e. a pattern, that is better, i.e. has a higher
WRAce-score, than the one induced by CN2-SD during one of the iterations.

For setting 1), the single subgroup case, CG-SD always evaluates far less
candidate patterns than the beam search, for all settings of beam size. For this
setting, CN2-SD did find the highest-scoring subgroup for each data set.

For setting 2), the result of the single-subgroup run carries over to the sug-
gested setting of beam size 20, even though the difference is not as pronounced
as before. While for some data sets CN2-SD needs less candidate patterns than
CG-SD for beam sizes 5 and 10, the heuristic technique also fails to find the
top-scoring subgroups for these settings. On average, CG-SD needs 5 to 20
times less candidate evaluations, and this factor correlates strongly with the

1 20 was suggested by a reviewer, 5 and 10 evaluated as well as to not bias the efficiency
estimation against CN2-SD.
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Table 4. Comparison of a complete subgroup discovery run, setting B. First
column lists the data set, last columns the number of candidate pattern evaluated by
CG-SD, corresponding to 100%, columns 24 the corresponding percentage-values for
different settings of CN2-SD.

Dataset CN2-SDyo [CN2-SDqg | CN2-SD5 CG-SD
Balance-2-Class 537.37% | 356.48% | 214.86% 471 (100%)
Breast-W 1588.41% | 865.23% e| 442.74% e| 179625 (100%)
Breast-W-equal 1475.91% e| 800.42% e| 504.28% e| 117251 (100%)
Car 689.71% 350.11% 184.15% 61609 (100%)
Colic 1109.36% e| 563.09% e| 285.68% e| 395291 (100%)
Colic-equal 892.98% e| 458.43% e| 218.20% e| 476363 (100%)
Credit-G 231.50% e| 113.24% e| 55.72% e| 543376 (100%)
Credit-G-equal 152.01% | 66.88% e 32.22% e| 684859 (100%)
Diabetes 1948.31% ©[1061.99% e| 486.26% e 8030 (100%)
Diabetes-equal 316.79% e| 169.46% e| 88.00% | 13836 (100%)
Heart-H 1223.74% | 617.57% e| 391.68% e| 22415 (100%)
Heart-Statlog 1263.71% | 911.69% e| 479.43% e 5509 (100%)
Heart-Statlog-equal | 1178.30% | 595.25% | 304.50% 6692 (100%)
Krkopt 655.85% e| 337.64% e| 182.00% e| 394671 (100%)
Mfeat-Morpho 1724.76% |1017.61% 530.07% 11775 (100%)
Mfeat-Morpho-equal| 1465.44% | 864.24% | 450.13% 12052 (100%)
Nursery 2082.05% |1066.15% 552.82% 975 (100%)
Segment 5610.12% |2835.89% |1410.76% 19293 (100%)
Tic-Tac-Toe TT1.75% | 391.34% | 201.31% | 2818 (100%)
Voting Record 1500.65% |2454.68% |2540.43% |3643096 (100%)
Z.00 13206.91% |6714.63% |3400.96% 1982 (100%)
Pendigits 2705.73% |1443.45% e| 733.19% e| 279217 (100%)
Mushroom 10002.78% |4870.87% |2377.40% e 8900 (100%)
Average 2210.15% [1150.94% | 588.10%

e denotes that a non-optimal subgroup, that is a subgroup having a lower
score than the highest possible, has been found
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used beam-size. Note, finally, that even a beam size of 20 does not ensure that
all highest-scoring subgroups are found by CN2-SD!

As a consequence, the answers to Q1 and Q2 are negative for both settings
1) and 2), and CN2-SD is neither as effective as CG-SD, nor more efficient.
Especially the second finding is surprising and significant since it clearly indicates
that heuristic search for rules, which is common practice in machine learning, is
suboptimal, both in terms of quality of found solutions and in terms of efficiency.
It therefore seems more appropriate to employ branch-and-bound algorithms
whenever the evaluation measure is upper-boundable or convex.

Related Work In addition to the CN2-SD algorithm, against which we eval-
uated our approach, there have been other systems for exhaustively searching
of subgroup descriptions. The earliest one is the EXPLORA system introduced,
cf. [26]. The system supports a wide variety of interestingness measures, both
convex and non-convex, and both heuristic and exhaustive search strategies.

Newer work includes the APRIORI-SD [25] and SD-MAP [2] systems which
adapt frequent pattern mining techniques to the task of subgroup discovery.
Both of these systems show a conceptual difference to SD-CN2 and SD-CG,
however: they mine the k most interesting subgroups in relation to the back-
ground distribution in the entire data. The sequential approaches evaluated in
this section, on the other hand, assume that knowledge of discovered subgroups
should inform the assessment of future subgroup descriptions. In addition, there
is an algorithmic difference to the CG-based approach: instead of using WRAcc
directly for pruning the space of descriptions, this pruning is based on a mini-
mum frequency threshold. The selection of the actual descriptions is performed
as filtering by interestingness in a post-processing step. While this allows for the
use of non-convex measures, as Atzmiiller et al. point out in [2], it relies on the
specification of a meaningful frequency threshold by the user.

Finally, there has been work on finding bounds on the quality of subgroup
descriptions. A weaker upper bound for the WRAcc measure can be found in
[46], and Scheffer et al. [40] proposed a sequential database sampling scheme for
approximating the k-best subgroup descriptions problem. The latter work allows
a PAC-like bound on the quality of the final solution but as the authors point
out, it is not applicable to measures such as the convex y2-statistic.

4.3 Finding Rules for Classification

Problem Description Classification is related to subgroup discovery, because
rules for classification concern groups whose class distribution differs from the
default one. Once rules describing such groups are found, they can be used
to predict the value of the class attribute. The main difference with subgroup
discovery is that rule-based classification aims at inducing a set of rules that,
taken together, correctly predict the entire set of training instances.
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Classification and Cluster-Grouping: Since the goal of classification can
be re-interpreted as finding rules that separate two classes from one another,
measures such as x? and Information Gain can be used as well as — to a cer-
tain degree — accuracy to solve the task in the cluster-grouping framework. The
problem then has the following characteristics:

- L={A=v|Aec A\ {A:},veV[A]}

— & a data set

— o is accuracy, x2, Information Gain or Category Utility
- k= 1, 7user

— A; = {C}, where C is the class attribute

Note, that when accuracy is used, its asymmetry will require the same bina-
rization of the target attribute as for the subgroup discovery setting.

The System Rule-based classifiers often rely on the covering paradigm [22].
Our focus lies essentially on the sequential covering paradigm in which patterns
are mined, covered instances removed, and the process iterated on the remainder
of the data set. Mining can either be done in a greedy way, e.g. optimizing some
measure’s score using beam search [10], or exhaustively, by setting thresholds
on e.g. the support and confidence of interesting patterns and performing the
covering step as post-processing [30, 29].

This gives rise to two possible “wrappers”, which are shown in Algorithms 5
and 6: sequential covering and complete mining.

Algorithm 5 The sequential covering algorithm.

S=0

repeat
& =&\ {ele covered by Thi(L,0,E, Tuser,C =c1)}
S=S5SUTh

until E =0V Thy =0

return S

Algorithm 6 The complete mining algorithm.
S = post—process(Thk (L,0,E,Tuser,C = cl))

By instantiating the inner loop of the sequential covering algorithm (Algo-
rithm 5) with CG we derive CN2-CG, by using a beam search maximizing x?2,
CN2,.. We empirically compare those two techniques below, also to RIPPER
[12], one of the most sophisticated sequential covering algorithms that use beam
search.
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For the complete mining algorithm, sketched in Algorithm 6, one choice is to
use minimum frequency to estimate significance; the resulting system has been
introduced as CBA [30] — classification based on association. Alternatively, by
using CG instead for mining the significant patterns, we obtain the novel CBC
— classification based on correlation algorithm, which we empirically evaluate
below.

Experimental Evaluation As demonstrated in the section on subgroup dis-
covery, beam size is important for both the quality of found solutions, and the
efficiency of the mining technique, when comparing CN2,2 to CN2-CG. At the
same time, we are also interested in comparing the performance to RIPPER. This
yields to the following reformulations of Q1 and Q2 for the sequential covering
approaches:

Q3 How does the quality of the rules found by CN2,., CN2-CG and RIPPER
compare?
Q4 Is CN2,» more efficient than CN2-CG?

However, for measuring the quality of the discovered solutions in the clas-
sification setting, we employ classification accuracy rather than the correlation
measures used for subgroup discovery. We are also interested in a comparison to
the state-of-the-art system for classification RIPPER.

For the comparison of the complete mining algorithms, the following questions
result:

Q5 How does the quality of CBA’s classifiers compare to those of CBC?
Q6 Is CBA more efficient than CBC?

Ezxperimental setup The experimental setting for the sequential covering ap-
proach are as follows:

— Beam sizes for CN2,. are 5, 10, 20.
— Minimum significance threshold for CN2,. and CN2-CG is 3.84.
RIPPER is run as WEKA’s [20] JRIP implementation with default parameters

and pruned classifiers evaluated.
— CN2,2- and CN2-CG-classifiers are unpruned.

For the exhaustive techniques, the following parameter settings are used:

— WEKA’s APRIORI implementation is used in CBA, with 1% minimum sup-
port and 50% minimum confidence.

— Minimum significance threshold of CBC is 3.84.

— Maximum number of mined rules is 50, 0002

2 An exception is the Kr-vs-KP data set where 90,000 rules are needed for CBA to
find rules with confidence of at least 90%
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— CBC mines only the 1000 most accurate rules, a restriction motivated by
an observation in [36], that the rules chosen for the final classifier fall well
within the 1000 highest-ranked rules.

The data sets used were again discretized. The discretization scheme was
more sophisticated than in the subgroup discovery experiments, using Fayyad
and Irani’s supervised discretization method [15]. The disretization algorithm
was run on the training folds, with the resulting intervals used on test data,
such as not to introduce bias into the data.

Table 5. Average accuracy and standard deviation for CN2,., CN2-SD, Rip-
PER, CBA, and CBC. The left-most column lists data sets, columns 2-4 accuracy
estimates for sequential covering approaches (2 & 3 annotated with statistical t-test
comparison to RIPPER), CN2,2 results are also annotated with the width of the beam
giving rise to the result, columns 5 & 6 list exhaustive techniques (column 6 annotated
with t-test comparison to CBA).

Dataset \ CN2,2 CN2-CG | RIPPER CBA CBC
Balance (2 Class)[86.8 & 3.90 (5)0[86.8 + 3.90[ 80.0 & 3.4|| 79.18 £4.59] 79.18 + 4.59
Breast-Cancer 81.5+8.4 (10) |{80.4 £ 0.8 | 71.7+0.7|| 68.19 +8.48| 66.77 £ 9.28
Breast-W 96.4 +2.40 (5) |96.4 2.4 | 95.7 £ 2.1|| 94.71 £1.90| 95.71 £1.34
Colic 82.9+5.50 (5) |88.9+£5.9 | 83.9+ 7.7|| 81.27 £8.07| 76.91 £6.51
Credit-A 86.5 £ 2.5 (20) 85.8 2.1 | 85.4 + 2.5|| 85.65 +4.35| 84.06 + 4.48
Credit-G 79.4+6.0 (10)0 79.4 +6.00 69.4 +5.4|| 71.40 +2.63| 69.80 + 4.89
Diabetes 7T74+54 (10) 75.1£6.2 | 76.0 4+ 3.9|| 75.92 +4.14| 75.78 +4.23
Heart-H 83.3+7.50 (5) |81.6 £6.3 | 79.2 £ 7.4|| 83.33 £6.69| 82.66 + 5.82
Kr-vs-Kp 94.3 £1.40 (5)e|94.3 + 1.4e| 99.3 £+ 0.4|| 80.72 4+ 1.75| 95.63 & 1.290
Mushroom 98.5 +£0.30 (5)e|98.5 + 0.3¢|100.0 & 0.0{| 99.53 4 0.19{100.00 £ 0.000
Spambase 91.4+1.4 (10) |89.0 + 1.4e| 92.7 + 1.1|| 86.39 4+ 1.62| 86.09 £ 1.61
Tic-Tac-Toe 84.6 +2.20 (5)e|83.1 + 2.2¢| 97.1 4 1.2{{100.00 £ 0.00{ 100.00 £ 0.00
Voting Record 95.3 +£3.20 (5) |96.2 £3.0 | 95.6 +2.8|| 94.25 4+ 3.10[ 93.10 + 3.58

o denotes statistical wins at the 99% level, base-line being RIPPER, and CBA,
respectively
e denotes statistical losses at the 99% level, base-line being RIPPER, and CBA,
respectively

Results CN2,2, CN2-CG, and RIPPER give rise to solutions of similar quality,
cf. Table 5, with RIPPER being significantly better than CN2,. three times
(four times vs CN2-CG), x2-based optimization being significantly better twice.
With CN2,. outperforming CN2-CG once, one can conclude w.r.t. Q3 that the
quality of the heuristically derived classifiers is at least equal to the ones found
using CN2-CG. The sequential covering approach allows the correction of errors
in the induction of local patterns by steering the search process for the overall
classifier in the right directions. It should be noted however that selecting the
right beam size is non-trivial, mirroring the results of the subgroup discovery
experiments.
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Two of the cases in which RIPPER finds the better solution are large data sets
with rules that have high accuracy on only small subsets (Kr-vs-Kp, Tic-Tac-
Toe). This indicates that significance measures at some point tend to penalize
low-frequency rules too much. On the other hand, the y?-based approaches sig-
nificantly outperform RIPPER on the Balance and Breast-Cancer data sets, both
of which are rather small, more likely leading to overfitted rules, which are dis-
counted by the significance estimate of x2. In contrast, all data sets on which
RIPPER performs well are large - giving a large enough sample to counteract
the overfitting stemming from accuracy maximization. Thus there seems to be a
slight advantage provided from the sophisticated pruning techniques of RIPPER
which has less of an effect on small data sets though.

The comparison of CBC with CBA shows that using x2 instead of support to
measure significance (and ranking them accordingly) gives better results. CBC
never performs significantly worse than CBA and in two cases is significantly
better, answering Q5 positively regarding CBC effectiveness. In the case of the
Mushroom data set the ordering of the rule set before pruning is decidedly differ-
ent between the two approaches and thus different rules are selected for the final
classifier. In the Kr-vs-Kp scenario, limiting the mining process to the 90,000
most significant rules according to support excludes many high-confidence rules.
Even at 200, 000, the highest confidence is at just 0.92, while for CBC rules with

confidence 1.0 are found within the 50,000 most significant rules according to

X2

Table 6. Average number of patterns mined by the CN2,., and CN2-CG,
number of patterns mined and used by RIPPER
CN2,2 | CN2-CG RIPPER

Dataset # mined | # mined | # mined | # used
Balance (2 Class)| 6.0 & 1.00| 5.4 +2.12| 8.7 +2.35| 5.2 4+ 1.22
Breast-Cancer 27.1 £6.30/24.6 £6.10({11.2 £ 3.97| 3.1 £0.74
Breast-W 12.8 £1.30|11.4 + 0.80{19.8 4+ 2.04| 6.6 +=0.97
Colic 16.5+2.90{ 8+0.90/12.9 £2.23| 3.6 +0.70
Credit-A 16.2 +2.40{14.6 £+ 1.84(25.5 £ 2.42| 5.8 + 1.81
Credit-G 31.1 +£6.10] 304 3.37{15.3 £2.79| 5.5 +2.12
Diabetes 10.0 +2.30{11.6 £ 3.37|20.1 £ 3.14| 5.2+ 0.91
Heart-H 9.0 £2.00| 8.8+ 1.75/10.8 £1.39| 3.5+ 0.85
Kr-vs-Kp 3.0 £0.00| 2.0+0.00{19.2 +1.13|15.4 £ 1.27
Mushroom 4.3+0.50 3+£0.00] 8.8+0.79| 8.7+ 0.68
Spambase 10.6 £ 1.00| 5.8 +0.92|53.9 4+ 3.28|27.3 £+ 3.23
Tic-Tac-Toe 6.3 +1.30| 8.8 +0.40/12.1 £2.02({10.6 + 1.27
Voting Record 4.8+0.6| 3.24+0.42] 8.8 +0.63| 2.9+ 1.20

Since the quality of found rules for the heuristic (CN2,2) and complete
(CN2-CG) x? maximization is very similar, Q4 focusses on whether one of
the two techniques is more efficient. Note that the introduction of beam search
mainly attempts to make the search space manageable by focusing on certain
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subspaces. Upper bound pruning on the other hand, uses a different kind of
restriction, also with the aim of focussing on the relevant parts of the search
space. Table 6 shows that CN2-CG often, though not always, selects fewer rules
than CN2,, apparently capturing the underlying regularities better.

Table 7. Number of candidate patterns evaluated by CN2,2 (for beam size
giving the best solution) and CN2-CG. Column three lists number of pattern
evaluated by CN2-CG, equating 100%, column two the corresponding percentage value
for CN2, .

Dataset CN2,2 CN2-CG
Balance (2 Class)| 139.83% 261.60 (100%)
Breast-Cancer 108.00%|  46153.30 (100%)
Breast-W 101.69% 6817.00 (100%)
Colic 2277.10%|  2288.70 (100%)
Credit-A 10.76%| 1003999.50 (100%)
Credit-G 1.35%|17061266.50 (100%)
Diabetes 40.60%|  13030.90 (100%)
Heart-H 36.27% 17809.40 (100%)
Kr-vs-Kp 5.46%| 240431.00 (100%)
Mushroom 90.66% 28758.60 (100%)
Spambase 16.14%| 2828763.30 (100%)
Tic-Tac-Toe 102.56% 2975.40 (100%)
VotingRecord 39.17% 11726.50 (100%)
Average 228.43%

The number of candidate patterns evaluated, shown in Table 7, does not
give a clear answer to question Q4. On several occasions CN2-CG is better,
most pronounced for the Colic data set, while e.g. on Credit-G CN2,2 finds
effective rules far quicker. A possible explanation is that effective rules are found
early, the upper bound is not tight enough though, thus exploring large parts
of the search space without gaining anything. The main insight is again that
using exhaustive search can be as efficient as heuristic search, given the right
pruning mechanisms, while in addition it guarantees optimality. Thus, complete
branch-and-bound algorithms seem to be preferable to heuristic ones.

The final question to be answered is Q6, namely whether CBA is more effi-
cient than CBC. Table 8 shows again no clear-cut advantage for either technique.
On average CBA mines slightly fewer patterns than CBC .

Again, large data sets on which accurate rules have small coverage, and data
sets with minority classes make upper-bound pruning less effective. More specif-
ically, basing associative classification mining on CG compares worst on Kr-
vs-Kp, Spambase, and Tic-Tac-Toe. We have seen however that Kr-vs-Kp gives
also CBA trouble and subsequent experiments in which the number of mined
patterns is set to 1.8 million still does not give classifiers comparing well with
the CG-solution while exceeding its number of evaluated candidate patterns
significantly.
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Table 8. Number of candidate pattern evaluated by the complete mining
algorithms The last column lists number of patterns for CBC, equating 100%, column
two shows the corresponding percentage value for CBA

Dataset CBA CBC
Balance (2 Class)|[156.01% 99.80 (100%)
Breast-Cancer  |127.44%| 8179.20 (100%)
Breast-W 52.58%| 12913.80 (100%)
Colic 136.29%)| 73682.90 (100%)
Credit-A 98.49%| 65226.50 (100%)
Credit-G 39.14%|155020.90 (100%)
Diabetes 126.52%| 3875.80 (100%)
Heart-H 172.57%| 14680.00 (100%)
Kr-vs-Kp 15.92%)687715.50 (100%)
Mushroom 95.86%| 53615.80 (100%)
Spambase 15.13%]445856.30 (100%)
Tic-Tac-Toe 38.14%| 24511.10 (100%)
Voting Record 65.41%| 88996.10 (100%)
Average 87.65%

To summarize, the experiments show that using statistically well-founded
measures improves the prediction accuracy of heuristic methods on small data
sets and generally improves upon the accuracy of frequency-based associative
classification methods. While the efficiency of CG-based techniques is on aver-
age as good as or better than the alternative approaches’, for particular data
sets existing methods can outperform CG. These findings suggest 1) that the
robustness of sequential covering algorithms such as RIPPER or CN2 that use
beam search, a heuristic technique, may be improved improved by using CG
2) that it may be advantageous to replace the use of support and confidence
in associative classification techniques such as CBA [30] and CMAR [29] by
using correlation measures grounded in statistical theory, 3) that also decision
tree approaches, who choose an optimal pattern based on a single attribute, may
profit from using CG instead, cf. also our approach to clustering below and the
Tree? approach of [7].

Related Work To the best of our knowledge, all rule-based approaches to
classification mine local patterns in some way and build classifiers from them.
Decision trees solve the problem of finding the optimal splitting pattern by es-
sentially limiting the number of conditions to one. There has been work on
multi-variate splitting criteria [35] - there, similar decisions on the induction
mechanism have to be made as in sequential covering. Sequential covering algo-
rithms like RIPPER or CN2 use beam search, a heuristic technique, inside the
covering loop and their robustness could be improved by using CG. Associative
classification techniques such as CBA [30] and CMAR [29] mine patterns based
on user-specified values for support and confidence. Both approaches rely on the
declaration of parameters by the user. The exhaustive algorithms have parame-
ters which are rather difficult to decide upon but which can have an important
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effect on the resulting set [11]. Additionally, the result set often is made up of
a very large number of rules, making interpretation by the user difficult. Basing
the choice of cut-off value on statistical theory and pushing the significance test
inside the mining step should improve both efficiency and effectiveness of such
techniques.

4.4 Conceptual Clustering

Problem Description In clustering, the goal is to partition the instances of a
data set into typically disjoint subsets (clusters) that exhibit high intra-cluster
similarity and high inter-cluster dissimilarity. For the numerical case clusters
can be represented, for instance, by centroids or medoids and the similarity
quantified by a vector norm such as the L1 or L2 norm.

In conceptual clustering, clusters have to be described in terms of nominal
values instead. This usually also means that the instances that are clustered have
nominal values (potentially in addition to numerical ones). A similarity measure
is then often harder to define. In general, instances are considered similar if they
agree on the values of many attributes. One measure for judging the quality of
a set of clusters is Category Utility [23] though others have been defined in the
literature as well.

Clustering and Cluster-Grouping Clusters are often arranged into a hier-
archy, with clusters closer to the root of the clustering tree (or dendrogram)
described by more general concepts. Such a dendrogram can be obtained using
either a divisive or an agglomerative approach. Here, we focus on a divisive ap-
proach, which bears some similarities to decision tree induction, in which clusters
are repeatedly divided into sub-clusters according to some criterion. According
to Hoppner et al. [24] clusters can be considered as deviations in distribution
from a default (or background) distribution w.r.t. certain attributes. Therefore,
CG can be used to identify patterns that capture the deviating areas and can
be used to split the clusters. Using CG assures the best split without restarts
of the clustering algorithm and allows the induction of conjunctive descriptions
for clusters. Maximizing e.g. Category Utility — with binary attributes only — is
a cluster-grouping task with the following characteristics:

—L={A=v|Ae Av e V[A]}, where A = {A;,..., A4},VA € A:V[A] =
{true, false}

— &€ a data set

— o is Category Utility

- k=1

- At:{A1|AZ€A}

Since the goal, as mentioned above, is similarity in as many attributes as
possible, all attributes are considered targets, with the symmetric measure CU
leading to the induction of patterns in whose coverage space either the occurrence
of true or false values will be higher than expected.
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The System A dendrogram is a decision tree-like structure, with cluster mem-
bership decided by the concepts in the nodes. Therefore the wrapper for a CG-
based clustering algorithm is a bit more involved, compared to the other wrap-
pers, mirroring recursive decision tree algorithms. Algorithm 8, which we term
CG-CLus, thus calls a function SPLIT that recursively constructs a tree, whose
inner nodes denote patterns (or their negations). This is to the best of our knowl-
edge the first time that correlation based patterns are used in divisive clustering
approach.

Algorithm 7 SpLiT

Input: Data set £, Leaf node ¢

if Thi(L,CU,E, —0) # 0 then
&1 =&\ {ele covered by Th,(L,CU,E, —c0)}
Ex=E\&
Create left child of ¢, ¢;, containing Th1(L,CU, &, —00)
Create right child of ¢, ¢,, containing =Thi (L, CU, &, —o0)
SPLIT(Eq, tr)
SPLIT(E2, tr)

end if

Algorithm 8 CG-CLUs
T=0
SpLIT(E,T)
return T

A second approach is cluster mining [38], where a clustering algorithm is
used to find a clustering, each cluster treated as a single class, and conjunctive
concepts learned on them. Afterwards, all instances matching a concept are
considered to be in one cluster, possibly producing overlapping clusters.

To evaluate CG-CLUS, we shall compare it to COBWEB [16], the arguably
best-known conceptual clustering technique, and a cluster mining technique us-
ing AuTocLass [9] and RIPPER. COBWEB iteratively processes instances, using
four operators: assigning an instance to an existing dendrogram node, creating
a new node, splitting an existing node, or merging two existing nodes.

Experimental Evaluation COBWEB’s direct assignment and iterative process-
ing gives it great flexibility in assembling clusters but also makes it vulnerable
to ordering effects in data. In addition, by using conditional probability vectors
instead of conjunctions to describe the clusters, it has fewer restrictions which
instances to cluster together. Thus, a question pertaining to COBWEB is:

Q7 Do COBWEB’s clusterings have higher CU than the ones of CG-CLUS?

26



This question is meant to provide an insight into the effectiveness of CG-CLUS.

AUTOCLASS is based on Bayesian principles and thus not directly optimizing
CU. On the other hand, it has greater flexibility than CG-CLUS in assigning
instances directly to clusters — not indirectly via the found description. In addi-
tion, decoupling the processes of forming clusters and finding a description gives
the actual concept formation greater flexibility than CG-CLUS possesses. Since
both COBWEB and a cluster-mining approach have greater flexibility (and make
conjunctive concept formation a non-integral part of the mining process), two
further questions are:

Q8 How similar are CG-CLUS” and COBWEB’s/ AUTOCLASS’ clusterings?

Q9 How complex are conjunctive descriptions of COBWEB’s/AUTOCLASS’ clus-
ters, compared to CG-CLUS’ ones, and how much information about the
underlying instances is recovered?

Ezperimental setup To compare the agreement of two clusterings, we use the
Rand index, which is the fraction of pairwise grouping decisions on which the
two clusterings agree. Let £ = {e1, ..., e, } be a data set and Cy, C3 two clusterings
of £. For each pair of instances e;, e;, C; either assigns them to the same cluster
or to different clusters. Let same be the number of decision where e;, e; are in
the same cluster in both clusterings and diff the number of decisions where they
belong to different clusters in both C;. The Rand Index is defined as:

same + diff
nx*(n—1)/2

If the number of clusters in a clustering is different, the Rand index will
obviously show a dissimilarity. Therefore, we attempted to form a number of
clusters corresponding to the number of class values on each data set in our
experiments.

To obtain a given number of clusters from a COBWEB dendrogram, there are
two possibilities — the user selects certain nodes in the tree, disregarding the
structure underneath them, or the growth of the dendrogram is limited.

In the first case, the fact that COBWEB often constructs dendrograms in
which every instance is sorted into its own cluster, makes this a non-trivial
procedure. Also, selecting all nodes from the same level of the tree does not
guarantee a good solution CU-wise.

Instead, in the WEKA implementation, a minimum CU-gain can be set which
determines whether new nodes in the dendrogram are introduced, or existing
nodes split. By starting out with a lenient threshold, systematically tightening
it when more than the desired number of clusters is formed and relaxing it when
the tightening proved to be too strict, it is possible to approximate the desired
number of clusters.

Unfortunately, this method does not always guarantee obtaining the tar-
get number of clusters, since COBWEB sometimes forms just one cluster or
tens/hundreds depending on a 0.0001 difference in the threshold value. Instead
of arbitrarily merging clusters, we used the COBWEB-solution whose number of

Rand(Cl y Cg) =
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clusters is closest to the actual number of classes, unless this number is 1, i.e.
all instances were sorted into the same cluster. After determining the COBWEB-
clustering, we attempted to construct the same number of clusters using CG-
CLus.

AvuTOCLASS can be supplied with the number of clusters it should create.
For each data set, AUTOCLASS performed 250 restarts with 200 iterations each.
The assumed model was single multinomial for all attributes. We used the best
clustering found for comparison with the CG-based approach.

As for our technique, CG-CLUS, to obtain the desired number & of clusters,
the k — 1 best splits are used. Since a good CU score on a small subset is easier
to achieve than on a larger one, patterns’ scores are weighted with the propor-
tion of instances of the complete set that they were derived on. The resulting
dendrogram is decision tree-like in the way data is split on patterns and their
impact discounted on the population size.

Owing to the need for binary attributes, discretization was performed as in
the subgroup discovery experiments, and nominal attributes binarized.

Results To answer Q7 and Q8, we report CU-values and the Rand-index for
CG-CLus- and COBWEB-clusterings for a variety of data sets in Table 9. For
the data sets for which hundreds or even thousands of clusters were formed by
CoOBWEB we did not attempt to form the same number of clusters using CG.
Instead we report on the Category Utility of the “correct” solution of CG-CLUS
(i.e. the clustering having as clusters the classes in the data), the average CU
for CoBWEB and no value (N/A) for the Rand-index. In the cases where we
match COBWEB’s number of clusters, these can vary for different runs, leading
to variations of the CU which we report. If we do not match the number of
clusters COBWEB produces, we report only a single C'U-value since CG-CLUS
forms only one partition with as many clusters as classes in the data.

The resulting Category Utilities show that far from always giving rise to
superior scores by using the more flexible clustering scheme, the quality of CoB-
WEB’s solution is clearly affected by ordering effects in the data. If the right
ordering of instances exists, COBWEB constructs very good solutions, if not, CU
values are rather low or the dendrogram is huge. When threshold differences of
0.0001 make the difference between a single cluster and a dendrogram having
hundreds of leaves it is difficult for the user to make an informed decision on
which clusters to merge. For the data sets where a reasonable number of clus-
ters was constructed, COBWEB’s average CU is larger than that of CG-CLUS
four times, less six times, while at the same time exhibiting similarities of the
clusterings in excess of 0.7. This means that Q7 has to be answered negatively,
COBWEB does not always translate the greater flexibility of its assignment mech-
anism into better CU values. Also, the solutions are rather similar, giving the
answer to Q8.

Table 10 is used to give insight into question Q9. It lists the number of classes
in the data, the average number of clusters in COBWEB’s clusterings over ten
runs, the number of rules learned by RIPPER (unpruned) on these clusters and
their accuracy. It should be noted that CG-CLUS builds a tree of conjunctive
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Table 9. CU of the CG-CLUS clusterings, and CU of COBWEB’s solution, averaged
over 10 runs, Rand-index of the two clusterings

Dataset CUcqa CUcw Rand
Credit-G 0.4408 0.0239 4+ 0.002 N/A
Credit-G-Equal 0.4753 0.1161 4+ 0.0293 N/A
Kr-vs-Kp 0.5343 4+ 0.0040(0.5782 £ 0.0012]0.7817 + 0.0029
KrkOpt 0.1536 4+ 0.0072| 0.1369 £ 0.002 | 0.7396 + 0.028
Letter 0.1742 4+ 0.0075/0.1342 + 0.0151{0.7629 4+ 0.0275

Letter-Equal

0.1677 £ 0.0053

0.1439 £+ 0.0063

0.8759 £ 0.0001

Mfeat-Fourier 0.4743 0.4487 +£0.1334 N/A
Mfeat-Fourier-Equal 0.7183 0.1855 £ 0.0289 N/A
Mfeat-Karhunen 0.457 0.0203 N/A
Nursery 0.3555 0.0846 £+ 0.0273 N/A
Optdigits 0.4609 4 0.0029(0.5234 £ 0.0229|0.7865 £ 0.0148
Optdigits-Equal 0.6865 £ 0.0203(0.7936 £ 0.0565|0.8509 =£ 0.0069
Pendigits 0.4336 £ 0.0091{0.4015 £ 0.0074|0.8519 + 0.0004
Segment 0.5878 4+ 0.0122(0.5438 £ 0.0505|0.7994 £ 0.1029
Segment-Equal 0.7925 £ 0.0083(0.7916 £ 0.0063|0.8984 £ 0.0039
Waveform 0.9791 1.1624 £ 0.0229{0.7822 % 0.0192

descriptions (and their negations) for clusters — which have 100% accuracy — and
can easily be constrained to form as many clusters as classes exist in the data.

The experiments show that COBWEB hardly forms a number of clusters that
corresponds to the number of underlying classes. In addition, most of the time far
more rules than classes will be learned on the data, which do not always capture
the clusters very well. So the conjunctive descriptions found using COBWEB’s
clusterings are at the same time rather complex and not always reliable.

Regarding the cluster mining solution using AUTOCLASS and RIPPER, Table
11 lists the number of classes per data set (both CG-CLUS and AUTOCLASS
form the same number of clusters), the number of rules learned by RIPPER and
their accuracy on AUTOCLASS’ solution, as well as the Rand-index of the two
clusterings.

The similarity of the clusterings produced by the two methods is generally
very high, with three exceptions, thus answering Q8. While AUTOCLASS’ solu-
tions give rise to smaller descriptions than COBWEB’s do, and AUTOCLASS’ rules
achieve a far higher accuracy on the underlying clusters, they still exceed the
number of clusters (and thus conjunctive descriptions in CG-CLUS’ tree) by far.
This means that while being rather close in actual composition, the description
of AUTOCLASS’ solution is far more complex.

To summarize, while being less flexible in forming clusters, the novel system
CG-CLus finds clusterings that are highly similar to the solutions of two more
flexible schemes that are well-established in the literature. The mining process
itself guarantees high intra-cluster similarity in a single run of the algorithm and
in addition, the formulation of conjunctive cluster descriptions of low complexity.
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Table 10. Classes per data set, average number of clusters formed by COBWEB, number
of conjunctive rules learned on the clustering using RIPPER, recovery rate (that is
training set accuracy of learned rules)

Data sets # of Classes| # of Clusters # of Rules |Recovery rate
Credit-G 2 349.5 +£180.96 | 38.9 £8.86 [65.44% + 17.61
Credit-G-Equal 2 202.5 +£191.02 | 42.7+£8.30 |78.34% + 18.80
Kr-vs-Kp 2 2.5+0.70 15.7 £+ 14.47 99.74% =+ 0.30
KrkOpt 18 13.8 £5.20 14.5 +5.98 (99.99% =+ 0.003
Letter 26 18.7 £13.01 | 139.6 & 40.65 |98.71% =+ 0.64
Letter-Equal 26 24.5 4+ 5.23 211.2 +24.04 |97.41% + 0.61
Mfeat-Fourier 10 54.9 £+ 60.58 51.9 +24.82 |95.13% =+ 3.84
Mfeat-Fourier-Equal 10 58 +24.35 24.6 +2.87 (96.99% + 1.20
Mfeat-Karhunen 10 663.7 £173.25 | 86.3 +19.59 |64.28% + 8.75
Nursery 5 1480.8 +958.07|1102.3 £ 710.23]97.22% =+ 0.92
Opdigits 10 8.5+ 1.65 103.4 £+ 16.59 |93.33% + 1.81
Optdigits-Equal 10 8.6 +1.17 111.2 £ 17.21 |93.47% + 1.00
Pendigits 10 7.24+0.63 60.5+7.01 [99.73% + 0.08
Segment 7 45+0.7 6.6 +1.17 {99.99% + 0.01
Segment-Equal 7 6.2 +0.42 38.9+3.24 [99.42% +0.13
Waveform 3 3.0 £ 0.00 524 +2.75 (97.31% 4+ 1.04

Table 11. Classes per data set, number of descriptive rules found by RIPPER on the
AvuTocLAss-solution and their accuracy, and similarity of found clusterings

Data sets # of Classes|# of Rules|Recovery rate| Rand
Credit-G 2 7 100% 0.5012
Credit-G-Equal 2 25 99.1% 0.5580
Kr-vs-Kp 2 2 100% 0.9185
KrkOpt 18 31 100% 0.9663
Letter 26 268 98.86% 0.9016
Letter-Equal 26 277 97.16%  0.9402
Mfeat-Fourier 10 92 99.15%  |0.8673
Mfeat-Fourier-Equal 10 64 99.4% 0.8481
Mfeat-Karhunen 10 89 99% 0.8729
Nursery 5 5 100% 0.6543
Optdigits 10 117 95.53% 0.8656
Optdigits-Equal 10 115 96.89%  |0.8887
Pendigits 10 73 99.66% 0.9019
Segment 7 9 99.91%  0.8345
Segment-Equal 7 10 99.65%  |0.9002
Waveform 3 50 98.2% 0.7877
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Related work The field of conceptual clustering is too vast to exhaustively dis-
cuss everything relating to our work so we will restrict our discussion mainly to
the papers mentioned in Section 4.4. One of the earliest approaches to inducing
conjunctive descriptions of conceptual clusters is the CLUSTER/2 system [32].
While CLUSTER/2 works bottom-up in a heuristic manner, generalizing pairs of
seed instances, our technique induces concepts top-down and gives guarantees
w.r.t. the quality of found solutions. The conceptual cluster mining task, intro-
duced by Perkowitz et al. [38], is similar to cluster-grouping w.r.t. to clustering.
Their goal is to induction clusters that are cohesive but also describable by a
simple concept. To this end, they use their PAGEGATHER system for cluster-
ing webpages and RIPPER to learn the concept separating each cluster from all
others. The final solution consists of all subsets of instances that correspond
to the learned concepts. Since both the clustering and the rule learning algo-
rithm could be instantiated differently, the conceptual cluster mining framework
is rather general. The approach does have potential drawbacks as discussed in
Section 4.4. In [37], an incremental branch-and-bound clusterer for the forma-
tion of hierarchies was introduced. Since addition of new observations can have
a severe effect on the existing hierarchy, re-insertion of instances and clusters is
performed during the formation process. To restrict the number of evaluation
steps needed, the set of nodes that could act as parents in the hierarchy to the
instance or cluster to be inserted is limited. To this end, an upper bound on
the best value a node can give is calculated based on the evaluation of picking
this node’s parents as parents of the new instance or cluster. The measure we
used for the quality of cluster descriptions in this work is Category Utility, with
the probably best-known clusterer using this measure being COBWEB. Due to
its incremental instance processing, the ordering of instances has an effect on
the solution. To address this effect, Fisher [17] explores several re-distribution
and re-clustering techniques for greedily improving an existing clustering. We
find the optimally discriminating patterns in the first run instead. A second is-
sue addressed in Fisher’s work is related to the effect we observed in Section
4.4, namely that COBWEB on certain data sets tends to create a large amount
of clusters, gaining only a small increase in Category Utility. The solution dis-
cussed in [17] is similar to post-pruning in decision tree learning in that certain
branches of the clustering hierarchy are removed during validation on a separate
data set. Third, Fisher discusses possible shortcomings of Category Utility as a
quality measure for clusterings. Assuming that a clustering is used for classifi-
cation afterwards, he suggests properties such as number of leaves, maximum
path length, branching factor and classification cost, e.g. number of attributes
to be evaluated, for measuring the quality of a clustering tree. All these param-
eters could be affected by a user, given a suitable wrapper around CG. Finally,
possible alternatives to Category Utility mentioned in this work could be used
in CG if they are convex.

An additional work that has to be mentioned is that of Blockeel et al. [5].
In their approach, a decision tree is constructed, with tests in first order logic
in the splitting nodes. While the measure used is intra-class variance, to induce
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similarity of numerical features, CU could be used instead. The main difference
lies in the fact that TIC describes clusters by conjunctions formed by along
branches of the tree but not in each splitting node.

5 Related Work

Work that is related to the overall cluster-grouping-framework can be roughly
grouped into two categories: work exploring the relation between local pattern
mining and diverse data mining or machine learning tasks, and algorithmically
related techniques.

5.1 Local pattern mining for machine learning

The task of correlating pattern mining has been introduced by Brin et al. [6].
Their solution to the problem is somewhat different than Morishita and Sese’s
one in that they mine for all pattern for whom all pairs of items correlate. By
restricting their definition in that way, they can derive an anti-monotone criterion
that can be used for pruning. It also means that they have more flexibility w.r.t.
possible rules. The caveat is, however, that there might be correlations which
will only emerge if a combination of items is related to a target item. Those will
not be found by their technique.

The relation between local pattern mining and classical machine learning
tasks has been explored in recent years, notably at the 2004 Dagstuhlseminar:
Detecting Local Patterns [33]. Hoppner [24] discusses the relation between lo-
cal pattern mining and clustering and arrives at an algorithm finding clusters
characterized by local patterns whose interestingness is measured w.r.t. a back-
ground distribution. Found partitions are then successively refined further. The
relationship between local and global models w.r.t. classification rule learning
is the topic of [21]. This work is more concerned with filtering and combining
mined patterns to build a classifier, though.

A short discussion of the unification of supervised (subgroup discovery, clas-
sification) and unsupervised learning (conceptual clustering) can be found in
[18]. The authors mention that supervised learning aims at predicting a single
attribute, unsupervised learning all attributes, and that tasks between those two
goals could be imagined but do not seem to pursue this further, as we do.

5.2 Related algorithms

Similar ideas to the ones discussed w.r.t. the CG algorithm have been explored
in the BRUTE system [39]. It performs a bounded, exhaustive search to find
the k best so-called nuggets. These nuggets are high-accuracy rules, essentially
local patterns that have a high predictive power for a potentially small set of
instances. In this regard they are similar to rules describing subgroups. Instead of
a minimum interestingness threshold, BRUTE asks the user to specify a minimum
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search depth and possibly also minimum number of positives covered and a beam
size.

Generally speaking, CQG, as well as any other exhaustive pattern miner, can
be interpreted as an instantiation of the OPUS system introduced by Webb [43].
Similarly to EXPLORA, referred to in Section 4.2, OPUS is a general system for
exhaustive mining that allows the application of supplied mining rules. The
optimization version of OPUS, OPUS?, depends on the use of an optimistic
value for pruning, i.e. an upper bound.

Webb et al. [45] also presented an algorithm for mining the best &k frequent
patterns according to an additional interestingness measure, specifically leverage
which is calculated in the same way as WRacc. The approach is similar to CG,
employing a dynamic threshold for pruning. The pruning rules are specifically
tailored to leverage, in contrast to the technique used here. The author identifies
finding additional constraints and according pruning rules as a future research
direction. The addition of a frequency constraint seems to conflict with our
intuition that a pattern should be interesting w.r.t. statistical considerations.

The CG algorithm is a substantial extension of the Morishita and Sese al-
gorithm for correlated pattern mining, APRIORISMP [34]. Morishita and Sese
have also adapted the basic APRIORISMP [41] to cope with multiple numerical
attributes in the consequent part of rules. By performing clustering of numerical
target values using the convex interclass variance criterion, they are defining a
further cluster-grouping task. The most important difference with the work of
Morishita and Sese [41] is thus that they only look for the k best rules achieving
this clustering effect and did not study the application of these rules to hierar-
chical conceptual clustering, subgroup discovery, or classification, which is the
most important contribution of the present work.

A similar technique has been developed independently by Bay and Pazzani
[3]. Their name for patterns that discriminate strongly between several values of
a designated attribute is contrast sets. Bay and Pazzani also use the convexity
of x? to derive an upper bound for patterns regarding a multi-valued target
attribute. The main difference with Morishita and Sese’s work lies in the fact
that the latter derive a general upper-bound framework applicable to all convex
correlation measures is developed, which we further generalized into the cluster-
grouping framework.

The cluster-grouping problem is also related to feature selection in conceptual
clustering and to semi-flexible prediction [42,8]. Talavera’s [42] motivation for
feature selection in conceptual clustering is somewhat related to our motivation
insofar as he is aiming for better comprehensibility, exclusion of irrelevant fea-
tures and more efficient clustering processes (both when creating and using the
clusters). There is also some similarity in where in the algorithm the feature are
selected, since it is recomputed for each node in the hierarchical clustering tree.
This is called local or dynamic selection. The main differences with our work
are two-fold: Firstly, Talavera’s work still retains COBWEB’s representation and
only achieves better comprehensibility by reducing the number of considered
attributes. Secondly, in his approach each attribute is scored before the actual
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clustering step, whereas CG performs feature selection as part of the clustering
process itself.

Cardie [8] defines semi-flexible prediction as learning to predict a set of fea-
tures known a priori as opposed to inflexible prediction (classification) and flex-
ible prediction (clustering). Her approach involves automated feature selection
for each attribute to be predicted separately. These features are then used in
subsequent independent prediction of the attributes. In contrast, we attempt to
predict a disjunction of attributes from a shared set of antecedents instead.

Finally, cluster-grouping is in many aspects related to the confirmatory in-
duction setting in the Tertius system by Flach et al. [19]. As in CG, several
target attributes are considered. It is interesting to note in this context that the
rule head is treated as a single target while CG treats each condition separately.
Flach’s work diverges from the general correlation setting in which correlation
is symmetric and instead focuses on the number of counter-instances to a given
rule, thus considering only directed associations. Using an optimistic estimate
(an upper bound) they prune non-promising candidates and find and rank op-
timal rules. Focusing on counter-instances only allows more flexibility regarding
the rule head, that is, the set of conditions need not be fixed.

6 Conclusions and Future Work

We have introduced the problem of cluster-grouping and argued that it can be
considered a subproblem in a wide variety of popular machine learning and data
mining tasks, such as correlated pattern mining, subgroup discovery, classifica-
tion, and conceptual clustering.

A key contribution of this paper is the formulation of the CG algorithm
for tackling the cluster-grouping task. We have also argued that it can be used
as a universal local pattern mining component in systems tackling important
machine learning and data mining tasks. Furthermore, using the CG algorithm
has several advantages that often help to alleviate some of the problems with
existing systems:

1. CG always outputs the k best solutions according to the interestingness
function o. This contrasts with current approaches to the subgroup discovery,
classification, and conceptual clustering settings, where the quality of the
discovered solutions depends on parameters at best related implicitly to o,
such as a minimum support threshold. At worst, such parameters are only
related to the employed heuristic, such as beam-size.

2. While CG is based on a generic brand-and-bound algorithm that has already
been used in several works in data mining, it extends these works in that it
allows to consider multiple target attributes.

3. An effective pruning technique uses the best o values seen so far to dy-
namically remove those parts of the search space that cannot lead to solu-
tions. This procedure often considers fewer candidate rules than heuristic
techniques, such as beam search (cf. also the experiments in Section 4.2),
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or complete enumeration techniques as associative classification or brute-
force search, combined with post-processing steps. Therefore, unlike the cur-
rent practice in machine learning, complete branch-and-bound search using
convex interestingness measures is often to be preferred over heuristic ap-
proaches like beam search.

4. The optimization with regard to interestingness measures is based on statis-
tical principles. Additionally, setting a parameter k to limit the size of the
solution set is — arguably — more intuitive than the specification of a beam
size or minimum support threshold.

We have shown that our approach is an extension of Morishita’s and Sese’s
work that allows one to apply the underlying ideas to more flexible target def-
initions and thus additional problem settings. We have provided experimental
evidence that CG is well-suited for rule-based subgroup discovery (CG-SD),
use in classification (CN2-CG,CBC), and conceptual clustering (CG-CLUS).
Different variants of existing and novel algorithms were implemented and ex-
perimentally compared to state-of-the-art techniques for solving these tasks. In
most of cases the CG based approach improved upon alternative techniques
in efficiency or performance. Especially worth mentioning are two novel algo-
rithms, CBC and CG-CLUS, which target associative classification and divisive
clustering respectively. CBC is a natural alternative to systems such as CMAR
and CBA that derive association rules using support and confidence. The CG-
CLUs algorithm is competitive with one of the best-known conceptual clustering
algorithms, COBWEB, and computes rule-sets that are easier to interpret.

Further research will proceed in several directions. First, as can be seen in
the experiments, the effectiveness of the pruning step depends strongly on the
tightness of the upper bound calculated. Therefore, it is desirable to tighten
future support estimates and therefore attainable values of o. Second, the tech-
nique should in principle be usable in the formation of multi-variate decision
trees [35]. For such a setting it would be necessary to extend the upper-bound
techniques to multi-valued target attributes. For the classification setting this
extension could take the form of learning rules involving error-correcting output
codes [14, 31].

Another direction is the application to other learning areas. We have already
employed the basic principles of CG in a different domain, tree-structured data
[7] and the cluster-grouping paradigm could also be extended into the area of
logical and relational learning [13].
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A Convexity Proofs

A.1 Convexity of Weighted Relative Accuracy( WRAcc)

Let A be an attribute, v € V[A] a possible value of A, £ a data set, r a rule
of the form b ~» A = v, with z = sup(b),y = sup(z ~ A = v),m = sup(A =
v),n =|E&|.

Then the usual definition of WRAcc:

P(b)(P(A =v|b) — P(A =v)) can be redefined as: WRAcc(x,y) = L (g - m)
n

x n

To prove the convexity of WRAcc, we directly check the convexity criterion:

WRAcc(Nz1,y1) + (1 — N)(z2,92)) =

Azy + (1 — N)xa </\y1 + (1= Nye m)

n A1+ (1 —=XNzz n
Apt(=Nye _ mOwi+(1=Nas)  _ ML AmT1 (I=Ny2 (1 =XN)mz,
" n n n? n n?
= % (z—i — %) + _(1—2):52 (g—z - %) = AW RAcc(z1,y1) + (1 — MW RAcc(z2,y2)

Since the two terms are equal WRAcc is not strictly convex function.

A.2 Convexity of Category Utility(CU)

As shown in 3.3, CU can be decomposed into a sum of partial CUs. If reformu-
lated in the stamp point notation, CU becomes:

CU{x,y1,---,yd)) = 531 CU(z,y;)
d 2 2 Cuin2 N2
= 2 ()7 (57 + (522)" - (5))
- ()7 (2ot (my?)

Since a sum of convex functions is itself is again convex it is enough to prove
the convexity of partial CU. Additionally to directly checking the convexity
property there is another way to prove convexity whose presentation takes up
less space. For a twice differentiable function to be convex, its Hessian has to be
positive semi-definite. The Hessian is the matrix of the function’s second partial
derivatives and for the two-dimensional case has the form:

2 9
0z2  Ozdy
o’f 0°f

dydx 0Oy?

A matrix is positive semi-definite if the determinants of all its leading prin-
cipal minors are > 0. This implies that we have to show that:
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2 2 2 ¢ 92 2 2
TF 00 S0 ana LS 07 0T

Ox? Oy> 0x2 Oy?2  Oxdy Oyox
A partial CU in stamp point notation is a sum that can be decomposed
further into the part corresponding to the instances covered by the rule body
and the instances not covered by the rule body. Again it holds that if those two

terms are convex, the entire partial CU is convex. The corresponding Hessians

are: 9
2y° =2y 20y—m)” 2y—2m
2 n—z)3n (n—x)2%n
Ty B G )
nz? nz (n—z)2n 2(n—z)n

2
The %, 88_;2 are obviously greater or than zero, so all that is left is checking
the determinants of the whole matrices. For the “positive” part (the part that
corresponds to covered instances) this determinant is:

w0l

oantive Aly—m)* _ Aly—m)®
= 0 and for the “negative” part: (= 2)n? — (n—2)n? =

4y2 4y2

n2zt  n2zt

So the Hessian of CU is positive semidefinite and thus CU is a convex func-
tion.
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