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ABSTRACT

Computer science is essentially an applied or engineering
science, creating tools. In Data Mining, those tools are sup-
posed to help humans understand large amounts of data. In
this position paper, I argue that for all the progress that has
been made in Data Mining, in particular Pattern Mining, we
are lacking insight into three key aspects: 1) How pattern
mining algorithms perform quantitatively, 2) How to choose
parameter settings, and 3) How to relate found patterns to
the processes that generated the data. I illustrate the issue
by surveying existing work in light of these concerns and
pointing to the (relatively few) papers that have attempted
to fill in the gaps. I argue further that progress regarding
those questions is held back by a lack of data with varying,
controlled properties, and that this lack is unlikely to be
remedied by the ever increasing collection of real-life data.
Instead, I am convinced that we will need to make a science
of digital data generation, and use it to develop guidance to
data practitioners.

1. INTRODUCTION

Computer science is basically an applied or engineering sci-
ence. By this, I do not mean that all work done in our field
does or should happen only in relation with a concretely de-
fined real-life application. But rather that we use the results
of other disciplines, be they mathematics, physics, or oth-
ers, and develop what should be understood as tools, devices
and algorithms that make it easier for humans to perform
certain tasks.

In Data Mining, those tools come mainly in two forms: 1)
supervised methods that learn from labeled data how to pre-
dict labels for unseen data or how to characterize predefined
subsets, and 2) unsupervised methods. A second dimension
along which to characterize them has to do with the scope
of their results: a) they apply either to (almost) the entire
data set — they are global in nature, such as classification
models or clusterings, or b) being local, they refer only to a
(non-predefined) subset of the data.

The setting where the lack of supervision and local results
intersect, i.e. 2b), it often referred to as “Pattern Mining”
(PM), which is the term I will use hereafter. It holds a
great promise: given large amounts of data and little or no
supervision, PM can find interesting, hitherto undiscovered,
relationships — patterns — in the data. Those patterns can
in turn be exploited in the domains whence the data were

generated to, for instance, further research, improve logis-
tics, or increase sales. To see why this promise is so great,
one only has to consider that supervised modeling already
knows one side of relationship it seeks to establish. Super-
vised modeling seeks explanations, unsupervised modeling
hypotheses.

Pattern Mining has been an active research field at least
since the publication of the seminal paper introducing the
APRIORI algorithm [3] for frequent itemset mining (FIM).
The twenty years since have brought an ever-widening scope
of the field, extending the original itemset/association rule
setting to semi-structured and structured data, the transac-
tional setting to single-instance settings such as episode and
network mining, and the application of PM techniques to a
variety of different fields. This widening of scope also led to
a plethora of techniques, published in a number of journals
and conferences.

As I will argue in detail, however, the increase in number of
topics and algorithms has not been paralleled by an equal
increase in understanding the strengths and in particular
limitations of developed techniques, or by guidelines for their
employment. And creating tools (or rather in many cases
blueprints) is not enough: to fulfill PM’s promise and make
the most of the developed techniques, it is necessary to give
potential users an idea how to actually employ those tools.
In particular, there are three large gaps in our understanding
of pattern mining;:

1. We do not know how most pattern mining al-
gorithms actually perform quantitatively! Pat-
tern mining algorithms are rarely, if ever, evaluated on
additional data after they have been published. Addi-
tionally, they are rarely extensively compared against
each other.

2. We do not know how to choose good parame-
ter settings for pattern mining algorithms! The
relationships between parameter settings and running
times/memory consumption are not well-established,
let alone the relationship to the interestingness of pat-
terns.

3. We do not know how mined patterns relate to
the generative processes underlying the data!
The current working interpretations of “interesting”
recur to (objective or subjective) unexpectedness, or
summarization/compression of the data. This under-
mines the interpretation of patterns and the applicabil-
ity of derived knowledge to the real-life setting whence
they originated.



In the following three sections, I will illustrate the gaps in
our knowledge in detail. In particular, I will pay attention
to the work that did attempt to fill those gaps, and proposed
ways of researching these issues, but also why it falls short.
These problems are not limited to PM — evaluations, com-
parisons, and the exploration of good parameter settings
also often fall short of best practices for supervised settings,
and techniques that result in global models. But the prob-
lem is particularly pronounced in PM, mainly because the
local results require the evaluation of individual patterns
and because quality criteria are harder to define.

As I will argue, an important contributing factor is the lack
of data in general, and of data with controlled, diverse char-
acteristics and known ground truth in particular:

e Lack of data necessarily limits experimental evalua-
tions and if no new data is added to the portfolio, no
reevaluations can be performed.

e Lack of diverse characteristics means that we have
seen algorithmic behavior only over a relatively nar-
row range of settings, and that we lack understanding
of how small changes in such characteristics affects be-
havior.

e The lack of data of which the ground truth is know,
finally, is the main factor that makes it so hard to fill
in the third gap: supervised data contains a certain
amount of ground truth in the labels, while this is miss-
ing for unsupervised settings, and global approaches
can be evaluated by assessing the data partition, for
instance.

There is a potential solution to this problem — artificial data
generation — but as I will show, the track record of the PM
community w.r.t. data generation is rather weak so far. This
has to be remedied if we want to do more than propose tools
that might or might not work. While developing generators
that lead to data with differing characteristics could turn
out to be relatively easy, knowing what kind of generative
processes can be expected to occur in real-life data will be
more challenging and such knowledge will often not be found
with data miners but with real-world practitioners. Hence,
I argue that we need to add a deeper understanding of data
— “data science” so-to-say — to the PM research portfolio, a
task that will require the collaboration with researchers and
practitioners of other fields that currently is too often more
statement than fact.

2. (RE)EVALUATION/COMPARISON

The first glaring problem has to do with the lack of extensive
evaluation of data mining algorithms, whether in the original
papers, on additional data, or in comparisons with other
techniques from the field. As a result thereof, we do not
have a clear idea how different algorithms will behave on
certain data. We do know some things: dense data sets will
result in more patterns and more computational effort, strict
formal concept analysis on real-life data will probably not
result in good output compression. But apart from that, the
body of knowledge is weak.

Often, the paper that introduces a new algorithm contains
the most comprehensive published experimental evaluation
of that algorithm in terms of running times, memory con-
sumption etc. Even those initial evaluations are often not

very extensive, though. In the following, I will give an
overview of this phenomenon in different subfields.

The seminal FIM paper used an artificial data generator to
evaluate their approach on more than 45 data sets, gener-
ated by varying parameters. Notably, all those data shared
a common characteristic — they were sparse. A similarly sys-
tematic evaluation can still be found in [61], yet most other
early work [22; 64; 44] used far fewer data sets. FIM papers
since have followed this trend with few exceptions.
Sequence mining was first formalized and proposed at roughly
the same time as FIM by the same authors and in [51] twelve
data sets are used for evaluation, nine of which artificial,
with a similarly declining trend for follow-up work [62; 21;
45]. Sequence mining was transferred from the transactional
setting to finding recurrent patterns — episodes — in single
large data sequences in [37] and algorithms from this subfield
have typically only been evaluated on a few data sets.
With a few exceptions, papers on the generalizations of se-
quences — trees (introduced in [63]) and graphs [25; 30; 26;
60; 24] — have followed the same trajectory, with two of my
own papers [11; 68] among the worst offenders in this regard.
Graph mining has also been extended to the “single large”
setting and different papers [17; 31; 28] have used less than
twenty data sets each from various sources.

Rarely have those algorithms been reevaluated on additional
data beyond that used in the original papers, apart from
some comparisons in the papers that proposed improve-
ments. Even in the latter case, transitivity has often been
assumed — if algorithm B has been reported to perform bet-
ter than algorithm A, comparing to B is considered enough.
But obviously, this only holds for the data on which that
evaluation has been performed, either locking future evalu-
ations into the same restricted data or leading to unjustified
generalizations about algorithmic behavior.

The paper that most incisively demonstrated this problem
is arguably the one by Zheng et al. [65]. As described above,
the data on which APRIORI was evaluated were artificially
generated and follow-up techniques mainly used subsets of
those data. When comparing the artificial data to real-life
data at their disposal, Zheng et al. noticed that the latter
had different characteristics. An experimental comparison of
the follow-up algorithms showed that claimed improvements
in the literature did not transfer to the real-life data — the
improvements had been an artifact of the data generation
process.

Unfortunately, that paper has remained one of a handful
of exceptions. With the exception of the Frequent Item-
set Mining Implementations (FIMI) workshops [19; 5], little
additional work has been done on FIM. While FIMI was
undoubtedly important, there were notable short-comings:
the workshop took place only twice, the focus was more on
the practical aspects of implementing abstract algorithms
than on an assessment of the algorithms themselves, and
was limited to the, relatively small, collection of data sets
available.

In graph mining, [59] compared four depth-first search graph
miners on new data, notably reporting results that contradict
those in [24]. The authors of [40] generated and manipulated
data, and most notably find that there is no strong relation
between run times and the efficiency of the graph codes, as
had been claimed in the literature.

Episode mining is an area in which evaluations and compar-



isons of algorithms are particularly rare. I am not aware of
any other work except my own [67], in which I used a data
generator to generate data having a range of characteristics
and reported results that indicate temporal constraints have
more impact than pattern semantics, contrary to claims in
the literature.

Those papers show how important it is to use data with new
characteristics, and to pay attention to questions of imple-
mentations and hardware when assessing the usefulness of
algorithmic approaches. Yet, compared to the body of work
describing algorithmic solutions, the body of work compre-
hensively evaluating those solutions is rather small.

3. IDENTIFYING PARAMETER SETTINGS

A second problem, somewhat related to the first, is that,
for the majority of techniques, it is unclear how parameter
settings should be chosen. As a rule of thumb, more lenient
parameter settings will lead to longer running times but not
even this relationship has been established concretely. At
first sight, the situation w.r.t. this problem is better but
this impression is deceiving.

Several papers established a relationship between the distri-
bution of mined frequent, closed, and maximal itemsets and
algorithmic running times [64; 49; 20; 14]. Apart from the
fact that such research does not exist for structured data and
patterns, those approaches are faced with the obvious prob-
lem that extensive mining, at potentially extensive running
times, is needed before the relationship can be established.
An improvement consists of estimating support distributions
and running times based on partial mining results, or sam-
pled patterns, as been the approach of [34; 43; 16; 10; 9].
Those studies only traverse half the distance though — in
predicting running times and output sizes — even though
[9] proposes setting a frequency threshold high enough to
avoid the exponential explosion of the output set. Whether
a threshold setting that allows the operation to finish in a
reasonable amount of time will lead to interesting patterns,
is largely unexplored.

A notable exception concerned with mining sequences under
regular expression constraints can be found in [6]. By sam-
pling patterns fulfilling data-independent constraints under
assumptions about the symbol distribution, they derive a
model of background noise, and identify thresholds expected
to lead to interesting results. A similar idea can be found in
[38], which uses sampling and regression to arrive at pattern
frequency spectra for FIM. By comparing analytical expres-
sions for spectra of random data to the actually derived
spectra, they also identify deviating regions, proposing to
explore those. Those two papers come closest to actually
giving guidance for parameter selection but are limited to
frequency thresholds. Yet, the blue print for building up
knowledge about the interplay of data characteristics and
parameter settings — for instance for storage in experiment
databases [54] — is there, held back by the relatively limited
supply of available data sets.

Apart from the fact that it would be attractive to fix param-
eter settings before an expensive mining operation, this is an
instance in which the unsupervised nature of pattern mining
makes the task harder than for supervised settings. In the
latter, validation sets can be used to assess the quality of re-
sulting models, and parameters adjusted accordingly. There
is work based on related ideas, which derive null models di-

rectly from the data, already found patterns, or user knowl-
edge and use statistical testing to remove all those patterns
that are not unexpected w.r.t. the null hypothesis [7; 18;
39], or uses multiple comparisons correction and hold-out
sets [57]. While such approaches promise to remove all sta-
tistically unsurprising patterns, unexpected patterns are not
necessarily useful ones.

4. MATCHING PATTERNS TO REALITY

This last remark hints at an important issue in PM: which
patterns to consider “interesting”. The field has moved on
from the FIM view of (relatively) frequent and incuding (rel-
atively) strong implications. Yet what has taken its place
are (objectively or subjectively) surprisingness (see above),
or effective summarization/compression (e.g. [56]). Such
patterns are undoubtedly interesting and useful but they
leave us with the third and in my opinion most important
gap in our knowledge: it is currently mostly unclear how the
patterns that are being mined by PM techniques relate to
the patterns actually occurring in the data.

To be clear about this: we know what types of patterns
we have defined, and we have the algorithms to find them
according to specific criteria (at least in the case of complete
techniques). In FIM, for instance, if there is set of items that
is often bought together, it will be found. Yet so will all of its
subsets, and maybe intersections with other itemsets, and
we are currently lacking the knowledge to decide which of
these patterns are relevant. Hence, in many cases we do not
know whether we capture meaningful relationships.
Furthermore, even if we could identify the actual patterns,
we would not know how those relate to the processes that
generated the data in the first place. To continue with the
FIM example, papers will often give the motivation behind
performing such mining by stating that supermarkets can
group items that are bought together close to each other, to
motivate those customers who did not buy them together to
do so. An alternative proposal states supermarkets should
group such items far apart to motivate customers to tra-
verse the entire store space and potentially make additional
purchases.

These strategies implicitly assume two different types of cus-
tomer behavior, though: in the latter case, the co-purchases
are systematic and can be leveraged to generate additional
business. In the former, the co-purchases are somewhat op-
portunistic, which also means that using the first strategy
could lead to loss of business. Maybe the two types of be-
havior actually lead to different expressions of the pattern
in the data. And maybe the layout of the supermarket at
the time of purchase has an effect on this expression, for
instance because it enables the opportunistic behavior. But
since there exist no studies relating mined itemsets to the
shopping behavior itself, i.e. the generative process of the
data, it is unclear, twenty years after FIM was proposed,
which of the two assumptions holds.

This has grave implications. If it is unclear how patterns
relate to the underlying processes, it is also unclear how
to exploit patterns in the domains that the data originated
from. Given that this is the rationale of data mining, the
current state of the art in PM research is therefore failing the
field’s main purpose: supporting real-world decision making.
Again, there exist studies that have attempted to fill this
gap in a more or less systematic manner [32; 53; 52; 36; 35;



66; 48; 58; 67]. The typical approach consists of embed-
ding explicitly defined patterns in the data (with or with-
out noise effects), and comparing mined patterns to them
to understand the relationships. Of particular interest are
experiments in which the data pattern generation takes a
different form from the pattern definition, such as in [35]
in which Bayes’ Nets were used to generate itemsets. Yet,
again, there are not many of them, and their focus has often
been only on a single technique.

The problem of interpretation exists for supervised and/or
global approaches as well, but arguably to a lesser degree. If
the goal is prediction, high accuracy is an indicator of a good
result — after all, there are “black box” classification tech-
niques but no black box PM ones. Similarly, a clustering
that exhibits high intra-cluster similarity and inter-cluster
dissimilarity is probably a good one — incidentally an as-
sessment that is related to good summarization. And even
if the setting is supervised and local, as in subgroup discov-
ery, patterns that correlate strongly with the subgroup can
be expected to be meaningful.

5. THE DATA PROBLEM

The preceding sections should not be read as an indictment
of all PM research. Quite contrary, many of the found solu-
tions are ingenious and elegant, and the impressive tool kit
that has been amassed should enable practitioners to ad-
dress many real-world problems more effectively. But faced
with data, a typical practitioner will not know which tools
to choose, how to set the parameters without extensive trial-
and-error, and what conclusion to draw from the resulting
patterns — unless we fill in the gaps.

There are several factors that influence the described situ-
ation. Some of those are related to what kind of research
is rewarded, which in turn relates to publication policies.
Instead of discussing those, the interpretation of which is
necessarily subjective, I want to draw attention to an objec-
tive factor that I have also pointed to in each section:
Despite what one would expect given the name “Data
Mining”, what we lack is data!

In reaction to the work of Zheng et al., the data sets they
introduced were added to the benchmark data sets for FIM
and reliance on the data generator from [3] was reduced.
Several other data sets were added over time and the col-
lection is currently downloadable at the FIMI website.! Yet
the totality of this collection comprises only twelve data sets.
This is a far cry from the large amount of data sets avail-
able at the UCI repository for machine learning [8] (used
for predictive learning, clustering, and subgroup discovery),
the UCR collection of data for time series classification and
clustering [29], or even the data sets available for multi-label
learning.?

Sequence mining is mainly performed on a small number
of biological data sets. Most of the real-life data used in
episode mining papers are covered by non-disclosure agree-
ments and have therefore never entered the public domain.
There are handful of tree mining data sets, mainly based
on click streams or website traversal. Graph mining also
makes heavy use of a small number of molecular data sets,
and network mining data sets have ranged from graph en-

'http://fimi.ua.ac.be/data/ — accessed 08/21/2014

2http://en.sourceforge. jp/projects/sfnet_mulan/
releases/ — accessed 08/21/2014

codings of UCI data to snapshots of social, citation, traffic,
or biological networks.

Unless the current collections cover by pure accident all
characteristics that can be encountered in the real world,
even best-practice evaluations based on them will not give a
complete picture of algorithms’ strengths and weaknesses,
making it difficult to address the first and second prob-
lem. Furthermore, even if we had large amounts of real-life
data at our disposal, in most cases we would not know the
ground truth of such data and therefore could not address
the problem laid out in Section 4. After all, real-life data
in supervised settings “only” need a label to assess whether
relationships are relevant but evaluating patterns in a local
unsupervised setting needs a much deeper understanding of
the data. And even if we had data available of which we
knew the ground truth, we would lack the knowledge about
the generative processes leading to this ground truth, as de-
scribed above.

Luckily for computer scientists, there is an alternative to
assembling ever increasing collections of real-life data, or
rather a complement: artificial data generation. This is the
solution that has been chosen in exploring phenomena in the
SAT solving community [47], for instance, or for evaluating
another unsupervised setting, clustering [46]. The idea is
also running like a thread through much of the work I have
reviewed so far, whether it is artificial data used for sys-
tematically exploring the effects of data characteristics, for
identifying where data deviates from random backgrounds,
or for matching patterns to generating processes.

5.1 Data Generation in PM

The problem is, however, that the story of data generation
in PM so far is arguably one of failure. The data gener-
ator used in [3] was discredited by Zheng et al.. This has
repercussions since the data generators used in sequence and
graph (and arguably tree) mining papers base on similar
considerations. Cooper et al. [13], attempting to fix a sec-
ond problem of that generator, ignored the first one, and
introduced new artifacts. The survey undertaken in [12]
lists 22 generators for network data, all of which attempt to
reproduce certain numerical properties of real-life data, such
as degree distribution, or clustering coefficient. With the ex-
ception of a few that attempt to model particular types of
networks, the authors found that none of the proposals gets
it fully right. The reference is admittedly somewhat dated
but other work published since [33; 41; 15; 42] comes to the
same conclusion.

Generators leading to data resembling the one already avail-
able suffer from the fact that they do not solve the problem
of the data bottle neck. Approaches such as [49; 50; 55] take
the output of an FIM operation and generate databases that
will result in similar output. Thus, they take the existence
of data as a given, as do the approaches that create null
models based on the data. Furthermore, the data generated
by the former is expected to result in the same mix of rel-
evant and irrelevant patterns as the old one, and the latter
mask the underlying processes.

While artificial data generation enables us to create data
with a wide range of characteristics, assess the effects of
different kinds of noise on the ability to recover patterns,
and to simulate different generative processes, we have not
used this ability to fill in the gaps in our understanding.
This will need to change, and I am convinced that to do so



we, or at least some of us, have to become data scientists.

6. DATA SCIENCE

When media and non-academics refer to data miners or data
analysts, the term “data scientist” is often used. But what
this term implies, in my opinion, is that such a person un-
derstands the data, and we do not. Part of this is by
design — as I wrote in the beginning, the promise of pat-
tern mining is to find interesting patterns in a largely unsu-
pervised manner. The naive interpretation of this promise,
however, is similarly flawed as the claim that in the age of
“Big Data”, discovering correlation replaces understanding
causation [4].

To fill in the gaps in our understanding as PM researchers,
data science needs to be added to our expertise. We need
to develop data generators that produce varied characteris-
tics in a controlled manner, to enable extensive experiments.
Those data generators need to use generative processes to
which we can map patterns back, so we start to understand
how certain processes manifest in the output of the tools we
develop. Concretely, this means exploring different distri-
butions (and mixtures thereof) governing the data genera-
tion, instead of fixing a single one. It means adding varying
degrees of noise to the data. And it means using genera-
tive processes that are different from the sought patterns —
Bayes’ Nets for itemset data, or interacting agents for net-
work data, for instance. In fact, there exists already a tool
that makes some of this possible, the KNIME data generator
[2], which is however neither used widely nor systematically
so far.

Once we have access to such generators, we can follow the
approach of existing studies to fill in some of the gaps that
currently exist. This means, for instance, evaluating and
comparing algorithms over data of different density, pattern
length, alphabet size, etc. It means establishing what pro-
portion of individual patterns can be recovered under the
effects of noise. It means assessing whether highly ranked
itemsets represent fragments of embedded patterns, or rep-
resent subgraphs of Bayes’ Nets. It also means understand-
ing whether data that are generated by the same processes
with the same parameters actually have the same character-
istics, and whether they give rise to similar result sets, i.e.
whether it is appropriate to transfer insights derived on one
data set to another that “looks” similar. In other words, it
should allow us to develop better ways of comparing data
sets.

This is obviously not an exhaustive enumeration and it will
take the creativity and effort of the community to get the
field to that stage. But even that can only be a step on
the way: we can learn how the patterns we mine relate to
the patterns in the data, and in turn to the processes that
generated them. How itemsets relate to agents that “shop”
according to certain “behavior”, for instance.

The knowledge about real-life behavior cannot come from
inside our community, however. Instead, it will be found in
physics [1], in engineering [27], in the social and life sciences.
Once we have understood which method to use, how to set
parameters, and how to select relevant patterns and inter-
pret them, based on the data available, we can approach
practitioners from those fields. Using their knowledge, we

3A claim that incidentally experiences tremendous push-
back.

can generate data that are real life-like, and troubleshoot
generators and evaluation methods. In all probability, some
of the assumptions from those fields will turn out to be
wrong but probably not more wrong than the assumptions
we ourselves have made in generating data so far. And if]
building on such assumptions, we find them to be wrong (or
at least questionable), and feed this information back into
the fields whence they originated, even better.

I have not come here to bury PM but to praise it. I am
convinced that the potential of the tools that the community
has developed over the last two decades is tremendous. I am,
however, challenging the community to develop guidance for
how to use those tools. Working closely with practitioners
and giving them hands-on guidance, the modus operandi of
many application papers, is a worthy endeavour but it is
also time-consuming and allows for little generalization. We
have to solve the data problem in data mining and we have
to do it in a better-founded way than by trying to acquire
additional real-life data sets. We need to make a science out
of generating digital data.
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