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Abstract
Detecting and characterizing geographical areas
that are attractive places for specific people, in
specific contexts, is an important but challenging
new problem. Mobility traces and their related
circumstances can be modeled thanks to an aug-
mented graph in which nodes denote geographic
locations and edges are represented by a set of
transactions that describe users’ demographic in-
formation (e.g. age, gender, etc.) as well as the
conditions of the movement (e.g. day/night, hol-
iday, transportation mode, etc.). We propose to
extract connected subgraphs that are related to
some user profiles, and use it to understand the
usages of the Vélo’v bike sharing system.

1. Introduction
With the rapid development of wireless sensor technologies
in mobile environments, such as GPS, Wi-Fi and RFID,
it is now very easy to monitor people mobility and use
this information to provide personalized services. The last
decade has witnessed a huge growth in the analysis of mo-
bility (Giannotti & Pedreschi, 2008). These studies fo-
cus only on mining trajectories and their applications (Li
et al., 2010; Luo et al., 2013; Monreale et al., 2009; Wang
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et al., 2011; Zheng et al., 2009), but do not take into ac-
count the contextual information of the individual trajec-
tories. Inherent contexts of the trajectories are essential
data to produce accurate and valuable models of mobility
patterns. Contexts and trajectories encode complementary
knowledge that cannot be deduced from one another.

The problem considered hereafter is how to detect and
characterize geographical areas that are attractive places
and routes for specific contexts. Such areas are frequently
accessed together in certain conditions by users of simi-
lar profiles compared to all contexts and users. Starting
from a relational database that gathers information on peo-
ple movements – such as origin, destination, date and time
of travel, means of transport, reasons for traveling, etc.
– as well as demographic data, we adopt a graph-based
representation that results from the aggregation of individ-
ual travels. In such a graph, the vertices are locations or
points of interest (POI) and the edges stand for user’s co-
visitations. Travel information as well as user demograph-
ics are labels associated to the edges of the graph.

Figure 1 (a) depicts an example of travels undertaken by
users (denoted u1, . . . , u4). For each user, we know her age
and gender, the context of the move (here the time period
during which the travel takes place – day or night) and the
set of movements, identified by a pair origin/destination,
that occur in this context. Capital letters, from A to E,
represent POI. This table can also be viewed as an edge-
attributed graph where edges stand for movements and are
labeled by the attribute values of the context. For instance,
we have a directed edge (A,B) labeled by (F, 20, Day) for
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User Gender Age Time Travels
u1 F 20 Day (A,B), (A,C), (C,B)

u1 F 20 Night
(D,C),(D,E),(E,A),
(E,D)

u2 M 23 Day
(A,B),(B,C),(C,A),
(C,B)

u2 M 23 Night
(A,B),(B,C),(C,B)
(C,D),(D,C),(D,E),
(E,D)

u3 F 45 Day
(A,B),(B,C),(C,D),
(D,A),(D,E),(E,D)

u3 F 45 Night (B,D),(D,B)

u4 M 50 Day
(A,B),(B,C),(C,B),
(C,D),(D,A),(D,E),
(E,D)

u4 M 50 Night (A,C),(C,A)
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Figure 1. Example of contextualized trajectories: (a) Transactional view; (b) Aggregate graph w.r.t the most general context ? = (Age ∈
[20, 50], Gender ∈ {F,M}, T ime ∈ {Day, Night}); (c) Aggregate graph w.r.t. context (Age ∈ [45, 50], T ime = Day); (d)
Aggregate graph w.r.t. context (Gender = M);

the user u1. Given a specific context, the edge-attributed
graph can be transformed into an aggregate graph the edges
of which are weighted by the number of attributed edges
that hold for the context. Three examples of aggregated
graphs are given in Figure 1 (b),(c) and (d). The weights
of the aggregated graph can be seen as the support of the
context in the graph.

The problem is thus to identify the contexts and sub-graphs
that are specific to one another. By specific, we mean that
a large proportion of the weight of each sub-graph edge
mainly corresponds to users that satisfy the context. The
adequacy of a context to an edge is assessed by a χ2 test
and some novel quality measures that makes it possible to
identify the so-called demographic and contextualized spe-
cific areas (DCSA). Two DCSA patterns are presented in
Figure 1 (c) and (d) (in bold): The first one identifies a
sub-graph that is traveled during the day , mainly by peo-
ple with age greater than 45. In the second sub-graph, bold
edges are very specific to male persons’ behavior, whatever
the travel time.

Such an approach provides new insights to understand ur-
ban data. To illustrate this fact, we consider its use on oper-
ating data of the bike sharing system of Lyon called Vélo’v.

2. Mining Contexts and trajectories
To analyze the interdependence between people move-
ments and demographics, we model the data as an edge-
attributed graph that is aggregated with respect to a context.
This operation results in a graph the weights of which are
the amount of users that, in the same time, follow the cor-
responding edges and satisfy the context. Comparisons be-
tween pairs of aggregate graphs makes it possible to iden-
tify demographic and contextualized specific sub-graphs
that are specific to a context. These different notions are
defined below.

2.1. Edge-attributed graphs and their aggregates

Edge-Attributed Graphs are able to model various informa-
tion networks. In the specific ones we consider hereafter, a
set of transactions, defined over a finite set of attributes, is
associated to each edge:

Definition 1 (Edge-Attributed Graph) An edge-specific
attributed graph G is a graph denoted G = (V,E,A, T )
where V is a set of vertices, E ⊆ V × V is a set of edges,
A = {A1, . . . , Am} is a set of m edge-specific attributes
and T ⊆ E× dom(A1)× . . .× dom(Am) is a set of edge-
specific transactions, i.e., each transaction t of T is a tuple
(e, a1, . . . , am) with e ∈ E, ai ∈ dom(Ai), that depicts
a contextual edge e. Te denotes the subset of edge-specific
transactions involving the edge e.

A context C = (A′1, . . . , A
′
m), with A′i ⊆ dom(Ai), is

a domain restriction over the attributes associated to the
edges. As the attributes can be of different types (e.g.,
symbolic, numerical, ordinal), the subset A′i are convex
to avoid uninterpretable results. The transactions associ-
ated to e that satisfy the context C are denoted Te(C) with
Te(C) = {t ∈ Te|∀ai ∈ t, ai ∈ A′i}.

Inspired by the hyper graph cube model defined in (Wang
et al., 2014), the transactions of T can be aggregated as in
traditional data cubes. Transactions that satisfy a context
C are grouped by edges, and an aggregation function is
used as weight of the edges of the graph. In the following
definition of aggregate graph, we use the count aggregation
function.

Definition 2 (Aggregate graph) Given a context C =
(A′1, . . . , A

′
m), and an attributed graph G = (V,E,A, T ),

the aggregation of G by C results in a weighted graph
GC = (V,EC ,WC) where

• EC is the set of edges e such that there exists at least
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one transaction in Te that holds for the context C, i.e.,
EC = {e ∈ E|Te(C) 6= ∅}

• WC(e) is a weight associated to each edge of EC that
is equal to the number of transactions associated to e
that are generalized by C, i.e. WC(e) = |Te(C)|.

It is generally necessary to focus the analysis only on edges
the weight of which is large enough. To this end, GθWC is
the thresholded graph whose edges have a weight greater
than or equal to a threshold θW :

GθWC = (V,EθWC ,WC), withE
θW
C = {e ∈ EC |WC(e) ≥ θW }

Figure 1(b) illustrates the aggregate graph with respect to
the context C = (dom(Sex), dom(Age), dom(Time)),
denoted ? to be consistent with database notations,
while Figures 1(b) and (c) show the aggregate graphs
G({F,M},[45,50],{Day}) and G({M},[20,50],{Day,Night}).

2.2. Context specific edges

To assess the specificity of a context C to an edge e, we
consider the proportion of users of the edge e that satisfy
the context and propose to statistically assess this value by a
Pearson’s chi-squared test of independence.This test deter-
mines whether or not the context appears more specifically
in the edge e than in the whole graph.

A user might satisfy or not a context C, and follow or not
the edge e. These four possible outcomes are denoted C
and C, e and e. Table 1 is the contingency table O that
collects the observed outcomes of e and C. The null hy-
pothesis states that the occurrences of the outcomes e and
C are statistically independent. If we suppose that C oc-
curs uniformly over all the edges of the graph, there are

W?(e)

∑
x∈E

WC(x)∑
x∈E

W?(x)
chances that a user that satisfies the

context C context follows the edge e. The three others
outcomes under the null hypothesis are constructed on the
same principle and are given in the contingency table E
presented in table 2. The value of the statistical test is thus

X2 =

2∑
i=1

2∑
j=1

(Oij − Eij)2

Eij

The null distribution of the statistic is approximated by the
χ2 distribution with 1 degree of freedom, and for a signif-
icance level of 5%, the critical value is equal to χ2

0.05 =
3.84. Consequently, X2 has to be greater than 3.84 to es-
tablish that the weight related to a context on a given edge
deviates sufficiently to reject the null hypothesis and con-
clude that the edge weight is biased at 95% significance
level.

A point has to be stressed here: the rejection of the null
hypothesis can be due to either a very large or a very low

value of |Te(C)|. The distinction between these two cases
will be done thanks to an additional measure q defined in
the subsequent section. To be considered significant for a
context C, an edge must have a positive value on q. θq
is thus a positive threshold used to estimate the specificity
of C on the each edge. The resulting significant aggregate
graph is denoted Gχ

2

C in the following.

2.3. Pattern definition and general mining task

Demographic and contextualized specific areas (DCSA) are
connected components of Gχ

2

C . This set of patterns is de-
noted CCχ

2

C . Not all such patterns are of interest for an
end-user and we propose to take into account the end-user’s
particular interest by considering additional constraints.
However, doing so often leads to well-known threshold-
ing issues that limit the effective application of such an ap-
proach. Indeed, most existing constraints are defined by a
parameter whose value is highly dependent on the applica-
tion and/or the dataset. It is therefore hard for an end-user
to decide on an adequate value. To overcome this problem,
we do not consider such constraints but instead take the
user’s preferences into account. Therefore, we propose to
discover patterns that maximize the end-user preferences,
with the possibility to set additional thresholds.

We denote by M a set of convex measures used by the
end-user as preferences over the patterns in CCχ

2

C . Each
measure gives a real value to each pattern and the mining
task consists to retrieve all the DCSA patterns that maxi-
mize those measures collectively. Therefore, given a set of
preferences M = {m1, . . . ,mk}, the patterns that are part
of the Pareto front – also called skyline – i.e., that are not
dominated by another one.

Definition 3 (Dominance) Given a set of preferences
M = {m1, . . . ,mk}, Pd dominates Ps, denoted Pd >M
Ps, iff ∀i : mi(Pd)) ≥ mi(Ps) and ∃j : mj(Pd) >
mj(Ps).

The mining task that we address is the following:

Problem 1 (Discovery of DCSA patterns.) Given an
edge-specific attributed graph G = (V,E,A, T ), a set
of user-preferences M , the problem of demographic and
contextualized specific areas (DCSA) pattern mining is to
compute the skyline of DCSA patterns defined by:

{(C, (X,Y )) | (X,Y ) ∈ CCχ
2

C and 6 ∃(C ′, (X ′, Y ′)) ∈ CCχ
2

C′

such that (C ′, (X ′, Y ′)) >M (C, (X,Y ))}

The main challenge arising from this problem setting is that
we have to consider all possible contexts as well as the con-
nected components of the significant aggregate graph Gχ

2

C .
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e e

C WC(e)
∑

x∈E
WC(x)−WC(e)

∑
x∈E

WC(x)

C W?(e)−WC(e)
∑

x∈E
W?(x)−W?(e)−

∑
x∈E

WC(x) +WC(e)
∑

x
W?(x)−

∑
x
WC(x)

W?(e)
∑

x∈E
W?(x)−W?(e)

∑
x∈E

W?(x)

Table 1. Contingency table O of events C and e.

e e

C W?(e)

∑
x∈E

WC (x)∑
x∈E

W?(x)

(∑
x∈E

W?(x)−W?(e)
)
×

∑
x∈E

WC (x)∑
x∈E

W?(x)

∑
x∈E

WC(x)

C W?(e)×

(
1−

∑
x

WC (x)∑
x∈E

W?(x)

) (∑
x∈E

W?(x)−W?(e)
)
×

(
1−

∑
x∈E

WC (x)∑
x∈E

W?(x)

) ∑
x∈E

W?(x)−
∑

x∈E
WC(x)

W?(e)
∑

x∈E
W?(x)−W?(e)

∑
x∈E

W?(x)

Table 2. Contingency table E under the null hypothesis.

The search space is thus at the same time very large and
difficult to traverse.

Notice that we have given a generic formalization of the
DCSA pattern discovery problem. In the following, we will
instantiate the set of user preferences M with several mea-
sures to be maximized. In particular, we will introduce the
quality measure q used to identify highly specific edges of
a context and discuss it.

3. DCSA Discovery
3.1. Quality measures

For a given context C, we aim to identify the edges whose
number of users satisfying the context C is greater than
what would be expected based on the information encoded
in the whole graph. Generally speaking, a measure that can
be used to assess such behavior would subtract the relative
weight of the edge e – the weight of the edge normalized by
some term – in the whole aggregate graph from its relative
weight in the context aggregate graph: WC(e)

Wnorm
C

− W?(e)
Wnorm

?
.

Obviously, if this term is larger than 0 then the edge’s
weight is greater than expected considering the other edges
in the graph. This means that this edge is of relatively
greater importance for the context than it is for the full
graph.

The question that remains is which terms to use for nor-
malization. A first option would consist of adopting the
same solution as in the χ2-test, that is using the sum over
the weights of all the edges for the context: WC(e)∑

x∈E
WC(x)

−
W?(e)∑

x∈E
W?(x)

. We will refer to these normalization terms

as WΣ
[C|?] from here on. A semantic interpretation of this

choice is to consider the edge weights as supports and iden-
tifying the edges that have unexpectedly high support onC.

A second option instead normalizes by the maximal

weight of any edge matching the context: WC(e)
maxx∈E WC(x)

−
W?(e)

maxx∈E W?(x)
, referred hereafter as Wmax

[C|?]. In this case, the
semantic is more similar to the one of multi-label classifi-
cation or exceptional model mining: the context describes
a set of instances, and each edge corresponds to a label of
that context. The goal is to identify labels for which this
context is more descriptive than expected.

In both cases, it is easy to achieve very high scores by sim-
ply drive down Wnorm

c until WC(e)
Wnorm

C
comes close to 1.0 for

all involved edges. To avoid this kind of over-fitting, we in-
troduce a normalizing factor, which penalizes contexts that
are too specific:

q(e, C) =
Wnorm
C

Wnorm
?

×
(
WC(e)

Wnorm
C

− W?(e)

Wnorm
?

)

Therefore, we consider that an edge is over-expressed in a
context C iff q(e, C) > 0 and under-expressed iff q(e, c) <
0. As in our problem setting the goal is to find edges that
are specific to a context, we enforce that every edge in a
DCSA pattern (C, (X,Y )) is over-expressed for the con-
text C. The same measure and approach could, however,
be used to identify edges that are avoided by certain popu-
lations.

This quality measure is applied to every edge of a DCSA
pattern P = (C, (X,Y )). To compute the score of the
whole pattern P , we have to aggregate the individual
scores. This aggregation can be done in different ways.
When calculating the score of P , we can sum over all edges
from Y : qΣ(C, (X,Y )) =

∑
e∈Y q(e, C), compute the

arithmetic mean of the edge scores: q = qΣ(C,(X,Y ))
|Y | , or

the standard deviation qσ =

√∑
e∈Y

(q−q(e,C))2

|Y |−1 .
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3.2. User preferences

To identify interesting patterns without requiring the end-
user to set thresholds, we are considering the patterns that
belong to the Pareto front defined by the set of user pref-
erences M . Naturally, the quality measure belongs to M .
Furthermore, the end-user may be interested in maximiz-
ing qΣ or q. The user’s preferences can involve some
measures on the whole pattern (C, (X,Y )) as the quality
measures but also some measures that focus on a specific
part of the pattern, especially the graph structure (X,Y ).
Therefore, the end-user may be interested in maximizing
the number of vertices mv = |X| or the number of edges
me = |Y |. In the rest of the paper, we take into account
these preferences to compute the skyline of DCSA patterns
(i.e.,M = {qΣ, q,mv,me}). We define our algorithm with
this set of preferences but any other convex measures can
be taken into account as a user preferences in our approach.
This point is discussed later.

3.3. Optional threshold constraints

Essentially, our approach only requires as input a set of
user preferences to look for DCSA patterns in the edge-
attributed graph G. Nevertheless, the end-user may also
want to constrain the shape of the DCSA patterns. To this
end, it is possible to specify some additional constraints in
our approach by defining some minimum thresholds w.r.t.
some measures.

For instance, the end-user may add some conditions on the
weight on the edges for privacy or interpretability reasons.
To this end, she can specify a minimum threshold θw. Note,
that this threshold is not related to a measure that explic-
itly appears in the set of user preferences M . It is also
possible in our approach to add some minimum threshold
constraints on the measures that are taken into account as
preference inM , especially to discard some extrema DCSA
patterns in the skyline, i.e., to avoid reporting patterns that
are in the skyline because they have an extreme value re-
garding one preference measure, while under-performing
for the other ones. The use of these optional thresholds
makes it possible to obtain a much narrower skyline of
DCSA patterns. A minimum threshold on a measure mi

from M is denoted θmi
.

4. Algorithm
The theoretical search space of DCSA patterns is structured
as a lattice which contains all possible combinations of con-
texts and edge sets. However, the collection of edges EC
(and the subgraph induced by these edges) is determined
by the context C (in interplay with optional thresholds). It
is noteworthy that the set of vertices VC involved in a pat-
tern P = (C, (VC , EC)) can be directly derived from EC .

Therefore, we do not mention VC in the following. This
means, for instance, that the lattice is bounded on one end
by {?,E?} instead of {?, V × V } and that there is no sin-
gle bound at the other end but instead a number of DCSA
patterns involving maximally specific contexts C, i.e. the
most stringent domain restrictions and their respective edge
sets EC .

The enumeration of all the patterns by materializing and
traversing all possible bi-sets from the lattice is not feasi-
ble in practice. Therefore, the algorithm enumerates con-
texts in a depth-first search manner. Then the optional con-
straints and the computation of upper bounds on the quality
measure(s) in the set of user preferences are used to reduce
the search space while using their properties to not develop
unpromising candidates. The enumeration can be repre-
sented as a tree where each node is an enumeration step. A
node consists of a pattern bi-set P identifying the pattern
(C,EC) and a set of candidates Cand. P is the pattern
in construction. P.C denotes the domain restrictions on
the edge-attributes, i.e., the context, and the context of any
pattern generated from P specializes P.C. P.E denotes all
edges involved inGP.C . Cand contains the possible exten-
sion of P , i.e., the set of restrictions that can be added to
P . At the beginning, P = {?,E?} and Cand is the set of
all possible domain restrictions. Each node of the enumer-
ation tree has up to |Cand| children, depending on pruning
effects.

Let us now describe the upper bounds used to drastically
reduce the search space. Even if the quality measure q is
not anti-monotonic, we can compute an upper bound of it
when using Wmax. Specifically, for a given edge e with
weight WP.C(e), the maximal possible edge score, the up-
per bound, is ub(e, P.C) = WP.C(e)

Wmax
?

×
(
1− W?(e)

Wmax
?

)
. This

result is obtained in a similar way to what was proposed in
the literature for convex measures.

The upper bound used for qΣ evaluated on a connected
component is obtained by adding up the upper bounds of
its individual edges. Those individual upper bounds can
also be ordered in descending order to derive upper bounds
for q. Since the largest upper bound for q will typically cor-
respond to relatively low qΣ, mv , and me, a series of upper
bounds {uqΣ , uq, umv

, ume
} are calculated that trade off

against uq against the others.

Finally, if q /∈ M , we can compute a tighter upper bound
on qΣ by sorting all edges’ WC(e) in descending order and
dynamically updating two sums of edge scores – one for
weights below the a split point, one for weights above –
while observing that Wmax

C needs to be consistent for all
edges; something that is not enforced for individual upper
bounds.

For q using WΣ, to the best of our understanding no upper
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bound can be computed and therefore no pruning is per-
formed.

We can overload the dominance notion and say that a
DCSA(C, (X,Y )) dominates a pattern P if for all its sets
of upper bounds {ubqΣ , ubq, ube, ubv}:

(C, (X,Y )) >M P ⇔
(qΣ(X,Y ) ≥ ubqΣ ∧ q(X,Y ) ≥ ubq ∧ |X| ≥ ubmv ∧

|Y | ≥ ubme ∧ (qΣ(X,Y ) > ubqΣ ∨ q(X,Y ) > ubq

∨|X| > ubmv ∨ |Y | > ubme))

Any P the upper bounds of which are dominated by the
current result set can be safely pruned. Since all singleton
contexts are enumerated in the first step, we have informa-
tion we can use for pruning Cand as well.

5. Travel patterns in the VÉLO’V system
VÉLO’V is the bicycle sharing and renting system run by
the city of Lyon (France) and the company JCDecaux.1

There is in total 348 VÉLO’V stations across the city of
Lyon. The VÉLO’V dataset contains movement data col-
lected in a 2 year period (Jan. 2011 – Dec. 2012). Each
movement includes both bicycle stations and timestamps
for departure and arrival, as well as some basic demograph-
ics about the user of the bike. We considered only move-
ments made by registered users, and aggregated all move-
ments a user performed between any two stations for the
entire time period. Hence, the VÉLO’V stations are nodes
in the graph (342 in total), and edges link two stations if a
VÉLO’V customer checked out a bicycle at the first station
and returned it at the second one. We treat the edges as
undirected. Customers are described by nominal attributes
such as gender, type of membership card, ZIP code and
country of residence, as well as a numerical one: year of
birth. There are a total 50, 601 customers. The data set
comprises around 2, 000, 000 contextualized edges in total.

5.1. Problem setting and parameter choices

The problem setting for our experiments on the VÉLO’V
data is essentially the one that we outlined in the introduc-
tion to motivate our work: given the characteristics of dif-
ferent users, we aim to identify populations that use the
rental bicycles in a particular manner. Given our earlier re-
sults on the synthetic data, we limit ourselves to q with a
normalization factor, both with the sum and maximum as
normalizing weights. We use M = {qΣ, q, ue, uv} and fix
θue

= 9, θuv
= 10, θW = 10 to find interesting enough

patterns. We also performed runs using qσ , to gain further
insight into the effect of using this user preference. The
clearest effect of adding qσ can be seen in the number of
patterns found (Table 3).

1http://www.velov.grandlyon.com/

Wmax WΣ

qσ ∈M qσ /∈M qσ ∈M qσ /∈M
1760 (9) 56 (6) 5124 116

Table 3. Number of DCSAwith and without qσ and after post-
processing (in parentheses)

Number of patterns and redundancy reduction. In both
cases, the effect of the skyline operator leads to redun-
dancy: a pattern that has slightly lower qΣ, for example,
than another one yet involves one more edge will neither
dominate nor be dominated. To tackle this problem, we
implemented a simple post-processing operation inspired
by those used in local pattern mining, or rule learning (Liu
et al., 1998):

1. All patterns are sorted according to a quality criterion
(we chose q to begin with those patterns the edges of
which are particularly strongly expressed).

2. Each pattern is considered in turn and if it adds at least
θpp ∈ (0, 1) additional nodes or edges proportional to
the current set of patterns, it is selected.

A first realization that this process brought is that using
WΣ might not work for a data set as large as VÉLO’V: indi-
vidual edge scores are so relatively low that q becomes very
low and sorting virtually impossible. For Wmax, however,
the post-processing scheme can be applied and we find that
using qσ mainly increases the number of redundant pat-
terns.

Qualitative results. Table 3 also lists the number of pat-
terns remaining for Wmax (θPP = 0.5) and we present
some of those patterns in the following section. Notably,
this simple scheme allows us to select patterns that collec-
tively cover the majority of nodes or edges, respectively.
Figure 2 shows 4 different DCSA from VÉLO’V. Pattern
(i) identifies people born after 1968, living in a city (Saint
Chamond) located approximately 50km from Lyon. It is
therefore not surprising that the edges involve the two main
train stations of Lyon: Perrache (south-west) and Part-Dieu
(center), from which users take bicycles to areas that are
not easily reached by metro or tram, such as the 1st and
4th arrondissements.

The edges of pattern (ii) radiate from all of Lyon’s train
stations, not only the major ones. Its description refers to
holders of a regional train subscription (monthly or yearly),
and the pattern notably involves 200 nodes, almost sixty
percent of the total. It is therefore very likely that this is a
pattern that identifies commuters.

Pattern (iii) is somewhat harder to interpret. It involves
users born in or after 1980 and we can identify three main

http://www.velov.grandlyon.com/
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(i)YoB ≥ 1968,ZIP = 42400 (ii)YoB ≥ 1962,CAT = OURA (iii) YoB ≥ 1980,TYP = standard (iv) YoB ≥ 1992,ZIP = 69003

Figure 2. DCSA discovered from VÉLO’V

areas: the scientific campus in the north, the Presqu’ile
and its pubs, and the shopping area in the center of Lyon.
It is notable that several of the long edges correspond to
very comfortable cycling routes: 1) the edge running south-
north on the Presqu’ile probably corresponds to Rue de
la République, a pedestrian zone that especially at night
makes for nice cycling, and 2) the eastern bank of the
Rhône offers nicely developed cycling lanes along the wa-
ter, for instance.

Pattern (iv), finally, does not seem to be very exciting:
young people that live in the 3rd arrondissement use
VÉLO’V bicycles to move around in their area. At a sec-
ond glance, however, this is the closest that we will come
to a ground truth in real-world data: the ZIP code of users
aligns with the area where the bicycles are used!

6. Related Work
Finding descriptions of subpopulations for which the distri-
bution of a pre-defined target value is significantly different
from the distribution in the whole data is a problem that has
been widely studied in subgroup discovery (SGD)(Lavrac
et al., 2004). When the target is a set of attributes, the high
dimensionality of the search space requires heuristic ap-
proaches (exceptional model mining, EMM) (Leman et al.,
2008). In our case, the targets consist of relative weights of
edges in connected components and are arguably dynamic:
edges can become over- or under- expressed and connected
components change accordingly.

Subspace graph clustering (Günnemann et al., 2010) con-
siders attributed-node graphs and seeks to identify quasi-
cliques whose nodes are similar in their attribute values
while being densely connected. The algorithm proceeds by
grouping nodes together according to shared attribute val-
ues and assessing whether they form a quasi-clique. Simi-
larly to our work, the end result consists of subgraphs and
a set of attributes on which those subgraphs exist. But
while attribute values group nodes and edges remain un-
changed in the former approach, attribute values determine
the weights of edges with nodes unchanged in our setting.

In similar settings trend mining in dynamic graphs meth-
ods seeks to identify sets of nodes whose attribute values
develop consistently over time (Desmier et al., 2013).

Several techniques aim at extracting subgraphs in edge-
attributed graphs such as (Qi et al., 2012; Boden et al.,
2012; Bonchi et al., 2012; Berlingerio et al., 2013). There
are two conceptual differences between those approaches
and our work: 1) they all use edge information (attributes
or weights) to find similar edges, and 2) use those edges
to group (and often partition) nodes. Contrary to this, we
are interested in edges the relative weight of which differs
from the full graph and consider those edges (and their de-
scription) their own reward. In (Qi et al., 2012), edges
are considered similar according to similar collections of
labels, and are used to partition nodes into communities,
edge weights are not considered. Similarly, (Bonchi et al.,
2012) tries and find clusters of edges (and therefore nodes)
in which all edges have the same labels. From some of
the same authors comes the proposal of multidimensional
network analysis (Berlingerio et al., 2013). The authors
formulate the idea that connections between nodes exist in
different dimensions, e.g. cities can have both train and
plane connections, and extend a number of network mea-
sures to multi-dimensional graphs. There is a semantic dif-
ference to our approach: two nodes having edges in a num-
ber of different dimensions are, for instance, considered to
be more strongly connected. In our framework, a single
edge between two nodes is enough – given that it has much
higher relative weight for a given context than would have
been expected.

The multi-layer coherent subgraph approach (Boden et al.,
2012) uses numerical labels on nodes to assess edges’ sim-
ilarity. Those values depend on the layers of the graph.
Nodes among which edges have similar edge-weights are
assembled into quasi-cliques, additional layers added in
which those nodes form quasi-cliques as well. There is
again the conceptual contrast between similar weights and
difference from background weights: MiMag might con-
sider edges similar that are not very typical for a con-
text/layer. There is also the semantic difference that all
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edges in a DCSA match the describing context and we find
those edges that are typical, whereas Boden et al. might
group very different contexts and discover that individuals
belonging to those contexts behave very similar for a cer-
tain set of nodes.

7. Conclusion
In this paper, we defined the problem of finding DCSA
in edge-attributed graphs. This problem finds many ap-
plications, especially in location based social networks
and recommendation systems: it allows to find connected
components highly characteristic of a given category of
users. We showed how an inductive approach rooted in
machine learning (with an original set of quality measures
in subgroup discovery) and database theory (with the sky-
line operator) can answer this challenging problem. This
is achieved thanks to an efficient data-mining algorithm
ESCARGot that avoids materializing all contexts/induced-
graph pairs and benefits from pruning and upper bound
computations techniques. We considered a case-study on
urban data: the analysis of the bicycle sharing system
Vélo’v of Lyon. In that context, we show that DCSA make
it possible to provide new valuable insights.
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