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' Mine patterns correlating with target concept
instead of using frequent patterns



Pattern Mining

Given: transactional database with binary target class
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Search frequent patterns that we
want to use to distinguish between
the (two) given classes
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Correlated Pattern Mining

Compare class distribution on all instances against
distribution on the covered instances

Covered by a frequent pattern
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Each pattern quantified by score
Top-k mining efficiently extracts k best scoring patterns
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Covered by a correlating pattern

Each pattern quantified by score
Top-k mining efficiently extracts k best scoring patterns



Correlated Pattern Mining

Correlation Matrix
Top 50 Sequences ) Top 50 Graphs

redundancy is still a problem

Each pattern quantified by score
Top-k mining efficiently extracts k best scoring patterns



Whole loaf vs. sliced bread

Pattern Mining considers whole database at once

Ths= {a,b,c}
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Machine Learning Techniques use parts of data.
Resampling, Validations Sets, Bagging, ...
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Divide et Impera
Splitting the database

f equal sized, stratified, non-overlapping folds

f equal sized, stratified, overlapping folds



United we Stand

How to merge f pattern sets
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How to merge f pattern sets

Sort based on COUNT:
d,c,f,a b, e
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United we Stand

How to merge f pattern sets
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Sort based on average RANK:
d(1.6), f(1.2), a(1), b(0.8), c(0.8), €(0.6)



United we Stand

How to merge f pattern sets

Sort based on correlation SCORE (on whole dataset)
b,e dc,a,f



Combinatorics

Split

non-overlap or overlap based on f folds

Mine
top-k correlated pattern from each part

Merge

count, rank, or score - take top n
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Overview

What about...
runtime w/o stepwise approach ? Q1
» expressiveness vs. runtime ? Q2

» predictive accuracy vs. runtime ? @3
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