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The Setting

• Vectorial data〈v1,v2,v3,...,vd〉

• Binary class {pos,neg}
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Varying accuracies
Faulty interpretations
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Goals

G1: High, consistent accuracy

G2: Small total number of nodes

G3: Structural stability w.r.t. data changes



Our Solution
Accuracy & stability: 

• Ensembles as tests

• Statistically quantified patterns

Size/Interpretability:

• Keep ensembles small

• Conjunctive patterns
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1. Induce k best patterns (IG)

2. Split data

3. Repeat until

• Subset too small

• Less than k rules found

Algorithmic aspects
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R2

R3 R’’1

R’’2
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Finding The Patterns
Branch-and-bound search:

• Enumerate/evaluate pattern(s)

• Better than current kth-best, 
keep

• Worse than current kth-best, 
discard

• Prune using upper bounds

{}

...
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Mis-Match!

Splitting Data

R1 ⇒ +

Match Non- Match

R2 ⇒ -

Match Non- Match

Several Patterns: less simple

R1

R2
Match? Non-Match? 



MV-predicted 
positive

Splitting Data

R1 ⇒ +

Match Non- Match
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Match Non- Match

Several Patterns: less simple

R1
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negative



So How Does One 
Look Like?

A4 = v1 ∧A5 = v2

A1 = v1

A3 = v1 ∧A5 = v2

A1 = v2 ∧A5 = v1

A3 = v1 ∧A2 = v1 ∧A4 = v1

A3 = v1
{

{
Majority Vote

Majority Vote

+ -

+



Performance

• Compared to Bagging, Boosting, C4.5

• Good accuracy

• Lot smaller than ensembles

• 1-2 orders of magnitude (# nodes)

• Still as unstable as C4.5, depending on data



Summary

• Goal: improve accuracy, stability of DTs

• Invert ensemble process ⇒ inside nodes

• Simple to induce, effective pre-pruning

• Improvements necessary



But wait...

• There’s more

• Not limited to classification

• DTs manipulate data
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Tree-structure
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Exist already
• Not flat ensembles (sets)

• Difference in granularity/refinement

• Examples:

Mining interesting, non-
redundant patterns:

Tree2, DT-GBI
Building clustering trees 

(Dendrograms):

CobWeb, TIC, CG-Clus

Using ensembles of 
conjunctive rules for 

classification:

Ensemble Trees
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Conclusion

• Goal: improve accuracy, stability of DTs

• Invert ensemble process ⇒ inside nodes

• Simple to induce, effective pre-pruning

• Improvements necessary

• Instantiation of more general mechanism





Support?

Doubt?

Rebuttals?

Questions?


