Ensemble lrees

Leveraging Ensemble Power inside Decision Irees

Discovery Science 2008
Budapest, 14.10.2008

Albrecht Zimmermann
Katholieke Universiteit Leuven



® \ectorial data <V|,V2,V3,...,Vd>

® Binary class {pos,neg}
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Igh, consistent accuracy
(G2: Small total number of nodes

G3: Structural stability w.r.t. data changes



©ur Solution

Accuracy & stability:

® Ensembles as tests

® Statistically quantified patterns
Size/Interpretability:

® Keep ensembles small

e Conjunctive patterns
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Algorithmic aspects

|. Induce k best patterns (1G) =

L

2. Split data =, .y
&'z 2z
3. Repeat until oo oo

® Subset too small

® | ess than k rules found
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Finding Iihe Patterns

Branch-and-bound search:

<
® Enumerate/evaluate pattern(s) / . \\
® Better than current kth-best,
keep 2
=2
® VVorse than current kth-best, z,
discard

® Prune using upper bounds
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Splitting [Data
Several Patterns: less simple

== + Re = -
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Performance

® Compared to Bagging, Boosting, C4.5

<

® Good accuracy

<

® | ot smaller than ensembles
® |-2 orders of magnitude (# nodes)

® Still as unstable as C4.5, depending on data



Summary

Goal: improve accuracy, stability of DTs

Invert ensemble process = inside nodes

Simple to induce, effective pre-pruning

Improvements NECESSsAry



® ot limited to classification

® DTs manipulate data
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EXist already

® Not flat ensembles (sets)
® Difference in granularity/refinement

® Examples:

Mining interesting, non-

Using ensembles of
redundant patterns:

conjunctive rules for

Tree?, DT-GBI - : classification:
Building clustering trees

(Dendrograms): Ensemble Trees

CobWeb, TIC, CG-Clus
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Invert ensemble process = inside nodes

Simple to induce, effective pre-pruning

Improvements NECESSsAry

Instantiation of more general mechanism






Questions!

Doubt!?



