The Data Problem in Data Mining

Albrecht Zimmermann Université de Caen Normandie

14th IDA, St. Étienne, 24.10.2015

UNIVERSITÉ CAEN NORMANDIE

The Data Problem in Unsupervised Pattern Mining

Albrecht Zimmermann Université de Caen Normandie

14th IDA, St. Étienne, 24.10.2015

UNIVERSITÉ CAEN NORMANDIE

Take home message

We don't understand

- Algorithm run times
- Parameter settings
- How to interpret mined patterns

We can begin to fix this

- Researching data generation
- Generating data
- Exploring mining behavior

→Because we lack data !

Add new knowledge/tools

Local pattern mining

Road map

1) Run time behavior

- 2) Parameter setting/output behavior
- 3) Relation patterns data
- 4) Data science

Road map

1) Run time behavior

- Problem setting
- Existing evaluation
- Data problem
- Attempts at understanding

Run times – how much data ?

Run times – how much data ?

What's the issue ?

Not enough data !

Zheng data sets added

-Nowadays FIMI (Goethals & Zaki) repository 12 data sets

UCI : 333 UCR : 70+

Zheng et al. killed QUEST, no replacement

Understanding run times

Pattern type	Itemsets	Graphs	Episodes
Characterized by	Distribution pattern lengths	 Subtasks Run time per fragment Edge densities/ Branching factor Java VM/Cache size 	 Length Non-event probability Alphabet size
	Zaki et al. 2002 Ramesh et al. 2003 Gouda et al. 2005 Flouvat et al. 2010	Wörlein et al. 2005 Nijssen et al. 2006	Zimmermann 2014

Understanding run times

Pattern type	Itemsets	Graphs	Episodes
Characterized by	Distribution pattern lengths	 Subtasks Run time per fragment Edge densities/ Branching factor Java VM/Cache size 	 Length Non-event probability Alphabet size
Zaki !	Zaki et al. 2002 Ramesh et al. 2003 Gouda et al. 2005 Flouvat et al. 2010	Wörlein et al. 2005 Nijssen et al. 2006	Zimmermann 2014

Predicting run times

Based on	Bernoulli/ Markovian model	Partial mining results	Sampling
	Lhote et al. 2005	Palmerini et al. 2004 Geerts et al. 2005	Boley et al. 2008/2010
		Work-around : how many frequent sets?	2

Top-k Pattern set mining Statistical pattern mining MaxEnt

Istical pattern min MaxEnt

- Same data (not much)
- W/problematic properties
- No patterns known !
- Can't compare

Understanding output sizes/composition

Pattern type	Itemsets	Strings		
Characterized by	Samples + Background models	Samples + Background models		
	Boley et al. 2008/2010 Van Leeuwen et al. 2014	Besson et al. 2008		
	Work-a where spectrum from ra	around : e's the n different andom ?		

Dairy	Produce	Produce	Flowers		Customer Service	
Dairy	Coffee	Frozen Foods Canned Foods Tea	Cercal	Promo	Registers	
Dany	Boor	Bakery Snack Foods Wine	Beverages	Water		Coffee Grinder

Understanding patterns – evaluation

Ad-hoc recovery of embedded patterns

Flanking run time experiments
Consulting domain experts

- Arguably biased

Humans see patterns everywhere !

No data !

- ...w/ known ground truth
- Prediction has labels
- Minimum : known patterns
- Better : known processes

Understanding patterndata relation

Ground Truth	Embedded patterns	Generative models		
	Zimmermann 2013, 2014	Mampaey et al. 2013 Webb et al. 2014		
	Comparing found to embedded	Comparing found to substructures of model		

Proposal : generating data

QUEST led the way

- -Allows for different characteristics
- -Known patterns
- -Controllable properties
- Others took it up
- -Non-systematically

We wouldn't be the first Engineering

- -Downs et al. 1993
- -CORSIKA Physics
- -Analytical sociology
- -Pei et al. 2006
- -SAT solving
- -Pascal this morning

QUEST!

Wrong transaction length distribution Replacement ? Cooper 2009 ?

log(support)

QUEST! Replacement? Wrong transaction Cooper 2009 ? length distribution 100 10000 QUEST 15k items Retail 1000 og([{i | support(i) = x}]) og(|{i | support(i) = x}) 10 100 10 1 10 100 1000 10000 1 10 100 1000 1 10000

100000

log(support)

Wrong transaction length distribution

Replacement? Cooper 2009 ?

Adä et al. The new iris data: modular data generators. KDD 2010

Inverse itemset No patterns mining **Depend on**

QUEST!

existing data

Chakrabarti et al.

2006

20 graph generators None gets it right No patterns

Challenge : recoverable patterns/realistic processes

- Sampling a degree distribution is **not** realistic !
- -And one cannot compare a subgraph to it
- Patterns don't have to be the same as data
- -Bayes' Nets to build itemsets
- -Sequences to build graphs
- -Agents !

Challenge : describing/ comparing data

When are data sets similar ?

The MetaLearners know about this :)

- -Column/row marginals not enough
- -Density not enough
- -Krimp code tables sunk by relabeling
- -Comparisons for structured data ?
- Should similar data lead to similar results ?

Challenge : making the right assumptions

Need to talk to specialists in the field

- -Who might lack the full picture
- -Who might be wrong
- Patterns might (seem to) make no sense

We'll have to go back time and again

CORSIKA is work in progress...

What do you think ?

The Data Problem in Data Mining. SIGKDD Explorations 16 (2)

•This slide intentionally left blank