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Who wins a b-ball 
game?

The team that scores more points!
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points?

You put the ball into the basket!
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How do you score 
points?

• Shots: 2 pointers, 3 pointers, free throws

• Get/keep the ball: steals, rebounds

• Don’t lose the ball: turnovers, fouls

You put the ball into the basket!
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Normalization (1)

10/50 possible rebounds - not that great

10/30 possible rebounds - much better
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Four Factors

1. Effective field goal percentage

2. Offensive rebound rate

3. Turnover rate

4. Free throw rate

Oliver 2004
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Normalization (2)

Take pace into account: slower games ⇒ 

fewer points

Efficiencies:

• Count possessions, divide by 
possessions, multiply by 100
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Normalization (3)

Take opponent into account: many points 
against weak defensive team ⇒ not 

impressive

Adjusted efficiencies:

• Divide by opponent’s counter stat, 
multiply by overall average
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Non-ML predictions
Average over season so far

Pythagorean expectation:

WinProbability =
((Adjusted)OEavg)

y

((Adjusted)OEavg)
y + ((Adjusted)DEavg)

y

Pomeroy
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Naive Zimmermann 
assumption
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Naive Zimmermann 
assumption

Using Machine Learning instead of 
statistical methods will lead to 

better results.
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Setting
NCAAB match data

• Location, normalized attributes, win/loss

Prequential error

Season 2009 2010 2011 2012 2013

Train 5265 10601 15990 21373 26772

Test 5336 5389 5383 5399 5464
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Season J48 RF NB MLP

2009 68.4% 68.8% 71.1% 70.8%

2010 68.9% 69.4% 71.7% 72.5%

2011 69.1% 67.8% 70.3% 71.6%

2012 70.4% 71.4% 72.8% 74.5%

2013 68.9% 68.8% 71.9% 72.2%
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Season J48 RF NB MLP

2009 68.4% 68.8% 71.1% 70.8%

2010 68.9% 69.4% 71.7% 72.5%

2011 69.1% 67.8% 70.3% 71.6%

2012 70.4% 71.4% 72.8% 74.5%

2013 68.9% 68.8% 71.9% 72.2%

Overfitting: 
default parameters 

at fault
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Season J48 RF NB MLP

2009 68.4% 68.8% 71.1% 70.8%

2010 68.9% 69.4% 71.7% 72.5%

2011 69.1% 67.8% 70.3% 71.6%

2012 70.4% 71.4% 72.8% 74.5%

2013 68.9% 68.8% 71.9% 72.2%

More 
training 
data not 
better
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Naive assumption doesn’t hold!

Season J48 RF NB MLP

2009 68.4% 68.8% 71.1% 70.8%

2010 68.9% 69.4% 71.7% 72.5%

2011 69.1% 67.8% 70.3% 71.6%

2012 70.4% 71.4% 72.8% 74.5%

2013 68.9% 68.8% 71.9% 72.2%
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Lesson 1: it’s in the attributes
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Adjusted Efficiencies, 
MLP
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AdjEff, MLP, Post-season
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Contribution :)
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AdjFF, MLP
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AdjFF, MLP
Contribution :)
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Naive Bayes
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• ~ 75% rarely exceeded

• Holds for other sports as well (NHL, 
Soccer, NFL)

Lesson 2: there might be a class 
ceiling
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Next steps

Better attributes

• Team stability/experience

Focus on mis-classifications

Sequential classification

• Concept drift?
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Next steps

Better attributes

• Team stability/experience

Focus on mis-classifications

Sequential classification

• Concept drift?

Season MLP

2009 70.8%

2010 72.5%

2011 71.6%

2012 74.5%

2013 72.2%
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More lessons?
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