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The competition

• Subsymbolic - e.g. SVM

• more accurate

• But: trees better comprehensibility!

• And: enough iterations (boosting) fix 
accuracy!



Boosting

• Learn classifier

• Reweight/Resample misclassifications

• Repeat

• Can approximate classification function to 
arbitrary degree
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Comprehensible?

• Probably hundreds of nodes

• Trees model different subregions of data

• Sounds like a trade-off

• Stability?

•  small changes in data ⇒ big changes in trees

• Let’s not even talk about bagging
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• Seems kinda hard to understand

• Decision tree much easier, right?
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• Great! Like a rule set (CN2 et al)

• Well - not quite

• DT rules mutually exclusive

• No negation in CN2-rules

What is a decision 
tree?

(A1 = v ∧A2 = v) ∨ (¬A1 = v ∧A3 = v)

1.A1 = v ∧A2 = v
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Tree-structure
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‘bout that 
Comprehensibility...

• Approximate “incomprehensible” classifiers

• Becoming same in process

• Trees model only training data

• Structure needed for interpretation

⇒ Comprehensibility not selling point



Towards new 
ensembles

• Heed the ETs

• Not short hand for DNF

R1

R2

R3 R’’1
R’’2
R’’3

R’1
R’2
R’3

• Same for dendograms, 
structure-trees

• Organizing local patterns 
into set/model


