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Assessing players a worth-while challenge in team 
sports

1. Is she worth a large contract ?
– Who’s the best player in the NHL and are they undervalued ?

2. How do we find a (cheaper) replacement ?
– Replacing CR7, for example.

3. Do they perform well in particular situations?
– Does Neymar make good decisions under pressure ?

4. Can we find hidden gems ?
– Who’s not in the top-10 but should be ?
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How to assess a player ?

1. Does things that help the team, avoids things that hurt it
– Scoring helps
– Preventing to score helps
– Put teammates in position to score helps
– Losing the ball doesn’t

2. Standard human way of assessment : discrete actions
– Goal
– Assist
– Block

Harder for more diffuse actions : 
● Setting a screen

● Help defense

Harder for more diffuse actions : 
● Setting a screen

● Help defense
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How to assess the quality of an action

● Human experts
– Biased

– Slow (90 mins+)

– Not that many experts around

● Hard to do for actions far in the past
– The pass directly before a goal is clear

– The screen 10 seconds before, though ?
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Assessment via machine learning

● Learn a model that assigns (numerical) values to actions
– Ground truth : based on expert assessments

– Or on back-propagation of positive/negative outcomes

● Score all of a player’s actions
– Even the ones that occurred long before a score

– Or the ones that occurred off the ball

● Calculate (category-specific) averages
– Some player are better passers/defenders etc
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High-level plan

● Soccer : 
– « Not all passes are created equal », Power et al. KDD ‘17

– « Actions speak louder than goals », Decroos et al. KDD ‘19

– « Choke or shine », Bransen et al. MSSAC ‘19

● Basketball :
– « Deephoops: Evaluating micro-actions in basketball using deep feature representations of 

spatio-temporal data », Sicilia et al. KDD ‘19

– « Bhostgusters: Realtime interactive play sketching with synthesized NBA defenses », Seidl 
et al. MSSAC ‘18

● Ice hockey :
– « Deep Reinforcement Learning in Ice Hockey for Context-Aware Player Evaluation », Liu & 

Schulte IJCAI ‘18
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Not all passes are created equal

● Consider passes’ risk and reward
● Event data + player tracking data

– Derived features

– Tactical features

– Formation features

● Logistic regression to learn risk
– Wanted interpretability

● Pass reward : probability of score within 10 secs
– Also logistic regression

● Formations
– Clustering
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Actions speak louder than goals

● Assess all actions, not just passes
● Event stream data

– SPADL, derived + contextual

● Valuing Actions by Estimating Probabilities (VAEP)
– Change in probability for scoring/conceding in « near future »

● CatBoost to learn probabilities for given game state
– Form of gradient boosted decision trees
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Choke or shine

● Do players make good choices/execute well under pressure ?
● Pre-game (mental) pressure, in-game (mental) pressure
● Pre-game : 

– Team ambition : k-means clustering

– Pair-wise rankings of games : Gradient-boosted tree to learn pressure

● In-game : 
– Based on state t, predict goals until end of match

– Auto-Differentiation Variational Inference algo for learning

● « Actions speak louder than goals » values
● Gradient-boosted trees learn success/failure of actions
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Deephoops

● « Micro-actions » : screens, cuts etc
● Player-tracking data

– Sliding window instead of full possessions

● Labeled windows  expected points value  change in EPV→ →
● Long short-term memory (LSTM) model to predict

– Complex architecture

● Combined w/learned player embedding
● « What if » assessments
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Bhostgusters

● How would the defending team respond ?
● Player tracking data

– + game context data

● Learn typical player trajectories by LSTM model
● Evaluate observed offensive possessions

– Actions can be switched out for « what if » scenarios

● Sketch hypothetical ones
– → routes for players, i.e. succession of actions : pass, dribble, move etc
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Deep Reinforcement Learning in Ice Hockey for 
Context-Aware Player Evaluation

● How good is the action a player performs in a particular 
situation ?

● Event data
– + derived features

● Split up into goal-scoring episodes
– Subdivided via possession changes

● Learn Q-function to assess actions
● LSTM network as learner
● Changes in Q value used to assess player
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Let’s talk data – what is event stream data ?
1. Something discrete happens

– Pass, tackle, block, turnover etc

– Events = actions

2. Annotated with
– x, y coordinates (origin, arrival)

– Involved player(s)

– Time stamp (beginning, end)

3. Derived from annotators’ 
work
– Watch the video, use particular 

software

– Some work on automatizing things

4. Irregular intervals

● « Simple pass »
– PlayerID : 25413

– x:49, y:49

– x:78, y:31

– EventSec :2.7586489999999912

● « High pass »
– PlayerID  : 370224

– x:78, y:31

– x:75,y :51

– EventSec :4.946850000000012

Pappalardo, Luca; Massucco, Emanuele (2019): 
Soccer match event dataset. figshare. 
Collection. 
https://doi.org/10.6084/m9.figshare.c.4415000.v5 

Pappalardo, Luca; Massucco, Emanuele (2019): 
Soccer match event dataset. figshare. 
Collection. 
https://doi.org/10.6084/m9.figshare.c.4415000.v5 
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Let’s talk data – what is (player) tracking data ?

1. Where are the players ?
– x, y coordinates

2. Where’s the ball ?
– x, y, z coordinates

3. Derived from camera 
images + entity recognition
– Team shirt colors help

4. Regular intervals
– Typically 20-25 Htz
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Let’s talk data

● Why events data ?
– Because events/actions are what makes the game go ‘round

● Why not only events data ?
– Because a pass w/o close-by defenders is a completely different thing

● Why tracking data ?
– Because it gives a complete picture

● Why not only tracking data ?
– Because positions don’t tell anything about actions
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Not all passes are created equal : Objectively 
Measuring the Risk and Reward of Passes in Soccer 
from Tracking Data

● Pass the most often occurring action in soccer
● Some easy ways of assessing passes :

– Success/failure

– Assist

● Assist = great pass
● Successful pass = good pass ?
● Failed pass = bad pass ?

High risk Low risk

High reward ? Good pass

Low reward Bad pass ?
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Not all passes : data (STATS Inc paper)

● 726 EPL matches
● Player positions sampled at 10hz
● Event data, e.g. pass, tackle, shot :

– x, y ball position, time stamp

– Player in position

– Player identity of opposing player for duels

● 571,287 passes, of which 468,265 successful (84.35%)

Sideways, backwards more 
successful

Closer to goal less successful
Longer less successful

Sideways, backwards more 
successful

Closer to goal less successful
Longer less successful

Imbalance problematicImbalance problematic
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Pass risk

● Probability that a player completes a pass he plays
● Derived features :

– Speed of passer and receiver

– Speed/distance of nearest defenders

– Nearest defender angle to passing line

– First time pass ?

– Time from regaining possession

– Most likely intended receiver : distance/min distance * angle/min angle

● Risk learned via logistic regression

Data transformationData transformation
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Tactical + formation features

● Build-up, counter-attack, unstructured play
– Expert assessment

● Formation clustering
– Polar coordinates of all players w.r.t. goal

– Polar coordinates of defenders w.r.t. passer/receiver

● K-means to identify high-, medium-, low-block (defensive)

Data transformation/ 
augmentation

Data transformation/ 
augmentation
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Formation clustering

● Group similar data points, 
separate dissimilar ones
– Unsupervised problem

● Team formation = set of roles
● One team per frame
● Normalized  zero mean for →

all tracking data
● Cluster « role positions » until 

convergence  formation→
– EM algorithm

● Results in 1411 formations
– Cluster with HAC using Earth Mover’s 

distance → 6 clusters

Large-Scale Analysis of Soccer Matches using 
Spatiotemporal Tracking Data, Bialkowski et al. ICDM ‘14

Large-Scale Analysis of Soccer Matches using 
Spatiotemporal Tracking Data, Bialkowski et al. ICDM ‘14
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The ML element : EM

● Expectation Maximization algorithm
● Generative model :

– Clusters represented as mix of Gaussians (means, covariance matrix)

– Probability for each Gaussian

– All of which are learned

● Alternating :
– For each point, calculate probability for belonging to different Gaussians

– Assign to most likely one

– Update Gaussians’ parameters

– Repeat
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The ML element : HAC

● Hierarchical agglomerative 
clustering

● In the beginning, each data 
point its own cluster

● Merge the two closest ones
● Until only a single cluster 

left
● The « tree » structure is 

learned
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The ML element : k-means clustering

● Cluster represented as « centroids » - mathematical middle of 
a « cloud » of points
– Which are learned

● Pick starting centroids at random
● Assign each point to most similar centroid
● Recalculate centroids (average over all cluster points)
● Repeat
● Minimizes sum of intra-cluster distances
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K-Means (1)
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K-Means (2)
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K-Means (3)
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K-Means (4)
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Pass reward

● Shot within the next ten seconds
– → extreme imbalance between classes : 10489 vs 194664

● Learned via logistic regression

Imbalance problematicImbalance problematic
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The ML element : logistic regression

● Learned from pass examples : x descriptors, y success/failure 
(reward)
– Supervised problem

● Logistic regression : 
– Linear regression y’ = β + β1*x1 + β2*x2+…
– The βs are learned
– Passed through logistic (or sigmoid) function 1/(1+e(-y’)) to 

get well-calibrated results
● Result between 0 and 1, interpretable as probabilities
● Assumes linear relationship
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Player assessment
● Individual passes in a play : which player played the one 

w/highest reward ?
● Passing Plus Minus (PMM) : 1-pass risk if successful, -risk is 

unsuccessful, normalized per 90 mins
● Difficult pass completion : proportion of passes in 75th 

percentile completed
● Passes Received Added (PRA) : credit of 1-risk per pass 

received
● Combine the two as catch-all stat
● Dangerous pass : reward in 75th percentile

– Again attempted, received

● Evaluated via recourse to « known » players
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Actions speak louder than goals : Valuing Player 
Actions in Soccer (SciSports paper)

● Event stream data
● Game states labeled w/chance of scoring/conceding

– In « near » future

● Performing actions  moving from one game state to the next→
● VAEP : change probability to score + -1*change probability to 

concede
● Two classifiers to predict probscore, probconcedes

– Learned via form of gradient boosted trees
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Data for learning

● Label : 1 if scored/conceded within the k next states (k=10 in 
the paper)

● Features : concatenation of ai-2, ai-1, ai
– Type, result, body part

– Start and end locations, distance/angle to goal, distance covered

– time elapsed since start of game

– Distance, elapsed time between consecutive actions

– Game context : goals scored by attacking/defending team, goal difference

Data transformation/ 
augmentation

Data transformation/ 
augmentation



33 Auteurs Titre 33 Albrecht Zimmermann USING MACHINE LEARNING TO ASSESS PLAYER QUALITY IN TEAM SPORTS

The ML element : decision trees
Weather Temperature Humidity Windy Play 

tennis

sunny hot high false No

sunny hot high true No

cloudy hot high false Yes

pluvieux mild high false Yes

rainy cold normal false Yes

rainy cold normal true No

cloudy cold normal true Yes

sunny mild high false No

sunny cold normal false Yes

rainy mild normal false Yes

sunny mild normal true Yes

cloudy mild high true Yes

cloudy hot normal false Yes

rainy mild high true No
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The ML element : decision trees

Asks questions, partitions data 
according to answer

Weather Temperature Humidity Windy Play 
tennis

sunny hot high false No

sunny hot high true No

cloudy hot high false Yes

pluvieux mild high false Yes

rainy cold normal false Yes

rainy cold normal true No

cloudy cold normal true Yes

sunny mild high false No

sunny cold normal false Yes

rainy mild normal false Yes

sunny mild normal true Yes

cloudy mild high true Yes

cloudy hot normal false Yes

rainy mild high true No
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The ML element : decision trees

Asks questions, partitions data 
according to answer

Weather Temperature Humidity Windy Play 
tennis

sunny hot high false No

sunny hot high true No

cloudy hot high false Yes

pluvieux mild high false Yes

rainy cold normal false Yes

rainy cold normal true No

cloudy cold normal true Yes

sunny mild high false No

sunny cold normal false Yes

rainy mild normal false Yes

sunny mild normal true Yes

cloudy mild high true Yes

cloudy hot normal false Yes

rainy mild high true No

Weather? 

Yes

cloudy
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The ML element : decision trees

Asks questions, partitions data 
according to answer

Weather Temperature Humidity Windy Play 
tennis

sunny hot high false No

sunny hot high true No

cloudy hot high false Yes

pluvieux mild high false Yes

rainy cold normal false Yes

rainy cold normal true No

cloudy cold normal true Yes

sunny mild high false No

sunny cold normal false Yes

rainy mild normal false Yes

sunny mild normal true Yes

cloudy mild high true Yes

cloudy hot normal false Yes

rainy mild high true No

Weather? 

Yes

cloudy
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The ML element : decision trees

Asks questions, partitions data 
according to answer

Weather Temperature Humidity Windy Play 
tennis

sunny hot high false No

sunny hot high true No

cloudy hot high false Yes

pluvieux mild high false Yes

rainy cold normal false Yes

rainy cold normal true No

cloudy cold normal true Yes

sunny mild high false No

sunny cold normal false Yes

rainy mild normal false Yes

sunny mild normal true Yes

cloudy mild high true Yes

cloudy hot normal false Yes

rainy mild high true No

Weather? 

Yes

sunny rainycloudy
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The ML element : decision trees

Asks questions, partitions data 
according to answer

Weather Temperature Humidity Windy Play 
tennis

sunny hot high false No

sunny hot high true No

cloudy hot high false Yes

pluvieux mild high false Yes

rainy cold normal false Yes

rainy cold normal true No

cloudy cold normal true Yes

sunny mild high false No

sunny cold normal false Yes

rainy mild normal false Yes

sunny mild normal true Yes

cloudy mild high true Yes

cloudy hot normal false Yes

rainy mild high true No

Weather? 

Humidity ?
Yes

No Yes

sunny rainycloudy

high normal
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The ML element : decision trees

Asks questions, partitions data 
according to answer

Weather Temperature Humidity Windy Play 
tennis

sunny hot high false No

sunny hot high true No

cloudy hot high false Yes

pluvieux mild high false Yes

rainy cold normal false Yes

rainy cold normal true No

cloudy cold normal true Yes

sunny mild high false No

sunny cold normal false Yes

rainy mild normal false Yes

sunny mild normal true Yes

cloudy mild high true Yes

cloudy hot normal false Yes

rainy mild high true No

Weather? 

Humidity ?
Windy ?Yes

No Yes YesNo

sunny rainycloudy

high normal true false
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The ML element : decision trees

Asks questions, partitions data 
according to answer

Weather Temperature Humidity Windy Play 
tennis

sunny hot high false No

sunny hot high true No

cloudy hot high false Yes

pluvieux mild high false Yes

rainy cold normal false Yes

rainy cold normal true No

cloudy cold normal true Yes

sunny mild high false No

sunny cold normal false Yes

rainy mild normal false Yes

sunny mild normal true Yes

cloudy mild high true Yes

cloudy hot normal false Yes

rainy mild high true No

Weather? 

Humidity ?
Windy ?Yes

No Yes YesNo

sunny rainycloudy

high normal true false

Tests (questions) learned based 
on quality function
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The ML element : boosting

● Learn a succession of classifiers
● Change weight of (label of) mis-classified data points
● Adaboost :

– Increase weight, instead of 1 mis-classified, have 1.2 mis-classified

● Gradient boost :
– Cost function with nice derivative

– Applied to size of error

– Change label : residual = actual – predicted values

– Well-classified goes towards 0
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Player rating

● Sum of value of all actions performed by player during time 
frame, normalized for 90 mins
– Can be limited to particular action type

● Compared to goals + assists, salaries
● Replacement assessment, Neymar, Cristiano Ronaldo
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Choke or shine (SciSports paper)
● Who performs well (or not) under pressure ?
● Pre-game pressure :

– Labels : 19 soccer experts rank pairs out of 170 random games (inter-expert agreement 
79.79%)

– Team ambition : k-means clustering into 4 groups based on previous result, transfer value 
of top-20 players, spending on loans, Football manager reputation score

– Game importance : Elo-based Monte Carlo season simulation, Kendall-Tau correlation 
between game and season outcome

– Recent performance : number of points obtained, deviation from expected performance 
based on Elo

– Context : location, rivalry (Football manager), attendance, since when coach is there

● Learned used Gradient Boosted Trees (LambdaMART ) : 
73.91 % agreement w/experts

Data transformation/ 
augmentation

Data transformation/ 
augmentation
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In-game pressure

● Pressure increases if goal improves chance for favorable 
outcome, decreases when goal has small influence

● In-game pressure winProb+tieProb if team scored in this 
moment

● Win probability model
– Future goals based on current state

– Number of goals scored, goal difference, # yellow/red cards, difference in Elo rating, avg # 
attacking passed/avg # won duels in previous 10 frames (1 match = 100 frames)

● Learned via Automatic Differentiation Variational Inference
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Measuring player performance

● Contribution : improve chance to win ?
– VAEP

● Quality : were there better options ?
– Expected contribution over all possible actions – actual contribution

– Needs probability of success
● Successful/failed actions, described by locations, body part, locations for previous actions

● GBT as learner

● Execution : how well done ?
– Actual outcome – predicted probability
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Player assessment

● Pressure levels :
– High : top-20 %

– Normal : middle-60 %

– Low : bottom-20 %

● Contribution rating
– Avg/90 mins

– Avg/90 per action type

– Percentile rank/90

● Decision rating
– Avg

– Avg per type

● Execution rating
– Pct rank per type
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Some results

● Riyad Mahrez better in high-pressure
– Rachid Ghezzal not a good replacement

● Tom Dwyer commits useless fouls under pressure
● Neymar’s performance declines under pressure

– Worse decisions
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Deephoops : Evaluating Micro-Actions in Basketball Using 
Deep Feature Representations of Spatio-Temporal Data

● Micro-actions : screen, pass, backdoor-cut etc
● Player tracking data

– → moments : vector w/positions of all players, x, y, z of ball, seconds on shot-clock, 
indicator for the 5 offensive/defensive players, polar coordinates w.r.t. basket of defending 
team

– Window of size T=128 (typically several actions during a single possession), annotated with 
terminal action (field goal attempt, shooting foul, No-shooting foul, turnover, null)

● Distribution of terminal actions learned via Long Short-Term 
Memory neural networks
– Supervised problem

● Map terminal actions to expected points :
– Baseline : points/possessions

– Difference → value of terminal action

« Null » outweighs rest 600 : 1 
→ under-sampling

« Null » outweighs rest 600 : 1 
→ under-sampling

Data transformationData transformation

32 cells, 3 layers32 cells, 3 layers
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The ML element : Neural networks

y’ = σ(b + w
0
 * x

0
 + w

1
 * x

1
+ … w

n
 * x

n
) Linear regression pass 

through function ~ 
logistic regression

Linear regression pass 
through function ~ 
logistic regression

Rosenblatt ‘58
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Neural networks (2)

Power comes from combination
« feed-forward » network

Trained by gradient descent

Power comes from combination
« feed-forward » network

Trained by gradient descent

 Rumelhart, Hinton & Williams ‘86
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Dealing w/sequential information : Recurrent neural 
networks

Problem during learning : error feedback 
may become overwhelming or disappear 

for long time lags (>10 steps)

Problem during learning : error feedback 
may become overwhelming or disappear 

for long time lags (>10 steps)

Older than ‘89
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The ML element : LSTM

Hochreiter & Schmidhuber ‘97
Gers et al. ‘00

Gated access to cell’s « memory » : 
- input

- output
- forget

originally for whole blocks of cells

Gated access to cell’s « memory » : 
- input

- output
- forget

originally for whole blocks of cells
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Player embedding

● Also neural network
● Learned in parallel
● Players w/similar contributions to distribution terminal actions 

« close » (similar) in learned space
– Unsupervised problem

● Concatenated w/LSTM output
● Fed into additional dense neural network layer
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Player assessment

● Did player action increase/decrease expected points ?



55 Auteurs Titre 55 Albrecht Zimmermann USING MACHINE LEARNING TO ASSESS PLAYER QUALITY IN TEAM SPORTS

Bhostgusters : Realtime Interactive Play Sketching
with Synthesized NBA Defenses (Disney research + 
Stats Inc)

● Where can we expect a defender to be ?
● Player-tracking data

– Possessions of ten 2D trajectories, one 3D trajectory

– Game clock, shot clock, player fouls, seconds logged per player

● Modeled by 5 2-layer LSTMs
– Label to be learned is next position of player

– Pre-training : predict where player is at next time step, given all other players’ positions

– Individual training : predict positions several steps into future, given all others’

– Joint training : like invidual but w/predictions of other LSTMs as input

ANN can have more than 
one output node...

ANN can have more than 
one output node...
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Labels : Expected points to assess actions

● (Potential) shot location
● Ball state
● Distance of two nearest defenders
● Learned via (parsimonious since only few descriptors) 

regression
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Player assessment

● Was a defending player where he was expected to be ?
● Did a defending player’s positioning best reduce EPM ?
● What offensive actions lead to best EPM ?
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Deep Reinforcement Learning in Ice Hockey
for Context-Aware Player Evaluation

● Event data
● Reinforcement learning

– 3-dim reward vector : goal scored by 
home/away/neither

– 13 possible actions

● Goal-scoring episodes
– From beginning of game/after goal has 

been scored

– To goal scored/end of game

● Learned by DNN
– Three output nodes

– 3 hidden layers, 1 LSTM, 2 fully connected

● Temporal difference learning
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The ML element : reinforcement learning

● Neither supervised nor 
unsupervised
– Label « changes » with distance from 

goal

● States of the world
– Actions → state transitions

– Action-value function Q(state,action)

Q-learning : ‘89
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Player assessment

● Goal Impact Metric (GIM)
– Change in goal scoring probability of players’ team from s

t-1
 to s

t

– Summed over match or season, normalized

● Evaluated via
– Comparison to NHL stars

– Salaries

– Currently used statistics (correlation)
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Takeaway message

● Getting the right data is important
– And hard/time-consuming/expensive

● Preparing the data might be even more so
– Requires understanding of the domain

● Deep learning offers powerful methods
– But it’s not only set of tools

● Evaluation methods are purely academical so far
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Machine Learning and Data Mining for Sports Analytics

● Workshop @ ECML/PKDD
● 8th edition, 13/09/2021
● 17 papers
● https://dtai.cs.kuleuven.be/events/MLSA21/

https://dtai.cs.kuleuven.be/events/MLSA21/
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