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a) post-processing
b) iterative mining
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Trade-off Trade-offCombined Scores

distinguishes classes

correspondences, ig, ...

fine, balanced partition

joint entropy

pattern set to inducepattern set to

class-correlated dispersion score

Bringmann & Zimmermann ’05
Cheng et al. ’08        Thoma et al. ‘09

Knobbe & Ho ‘06
Bringmann & Zimmermann ‘07

Cheng et al. ‘07
Rückert & Kramer ‘07
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which paradigm is justified?
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what we found - algorithms
characteristic result

auc dtm >> fcork

# correspondences dtm ~ fcork
# equivalence classes dtm > fcork

# features dtm >> fcork

running times dtm >> fcork

it’s in the way they work!
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