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My Motivation

• Involved in industry cooperation

• Time-stamped event data

• Approach: episode mining

• e.g. sliding window, minimal occurrence

• Off-the-shelf miner

h(E, 1), (A, 12), (B, 15), (C, 25), (D, 26), (A, 36), (B, 38), . . .i
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My Motivation

• Involved in industry cooperation

• Time-stamped event data

• Approach: episode mining

• e.g. sliding window, minimal occurrence

• Off-the-shelf miner

h(E, 1), (A, 12), (B, 15), (C, 25), (D, 26), (A, 36), (B, 38), . . .i

NO idea what to
 do 

with patterns!
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Going to the literature

• Guidance which approach to use - none

• Significance measures - (almost) none

• Guidance where in the output relevant 
patterns are - (almost) none

• Guarantees that patterns are found at all - 
(almost) none

15 years of 
research
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Why’s that?

• Few temporal (real-life) data sets

• Locked by NDAs

• Real-life data sets have no ground truth!

• Post-hoc evaluation by domain experts

• Opposed to a priori class labels
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Why’s that?

• Few temporal (real-life) data sets

• Locked by NDAs

• Real-life data sets have no ground truth!

• Post-hoc evaluation by domain experts

• Opposed to a priori class labels

Episode mining 
specific

Pattern 
mining 

problem
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Straight-Up Solution

• Generate diverse artificial data w/known 
patterns

• Building on Laxman’s generator

• Extensively evaluate different techniques/
measures

• Develop guidelines when methods 
expected to work
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Straight-Up Solution

• Generate diverse artificial data w/known 
patterns

• Building on Laxman’s generator

• Extensively evaluate different techniques/
measures

• Develop guidelines when methods 
expected to work

(Related episodes 
and HMMs)
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Comparative Data 
Mining

A detour to knowledge discovery

1. Get hands on real life data

2. Generate artificial data w/same 
characteristics

3. Mine patterns on artificial & real life data

4. Use relationship known & mined patterns  
on artificial data to select patterns from 
real data 
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Laxman’s generator

• n sequential patterns

• length N

• alphabet size M

• length of data sequence

• noise probability p

• uniform distributions for noise/time stamps
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Laxman’s generator

• n sequential patterns

• length N

• alphabet size M

• length of data sequence

• noise probability p

• uniform distributions for noise/time stamps

- n=2, p ∊ [0.2,0.5]
- fixed M
- no sharing/repetition of 
elements
- interleaved episodes
- embedded concurrently

Monday 10 December 12



What’s “realistic”?

• Time information matters

• Events might not be logged

• There might be several patterns

• Differently likely

• Patterns might interleave/share events/
repeat events

• Patterns might occur successively

• Not only uniform distributions
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What’s “realistic”?

• Time information matters

• Events might not be logged

• There might be several patterns

• Differently likely

• Patterns might interleave/share events/
repeat events

• Patterns might occur successively

• Not only uniform distributions

This is 
anecdotal

Episodes probably 
time-constrained
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Adding parameters

• Failure (to log) probability

• Maximal delays explicit

• Enforcement in episode

• Switches for sharing/repetition/interleaving/
concurrency/weights

• Poisson distribution for noise

• (Mixture of) normal distribution(s) for 
delays
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Different kinds of data
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Different kinds of data
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Different kinds of data
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Can I rebuild my data?
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Can I rebuild my data?

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0  2  4  6  8  10  12  14  16  18  20

Nu
m

be
r o

f O
cc

ur
re

nc
es

Event types

Real life-like data 02

Monday 10 December 12



Can I rebuild my data?
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Can I rebuild my data?
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Harder for time
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Experimental results

• Time constraint seems more important 
than matching semantic

• Best case: pattern within top-10

• Several patterns: very hard

• Real life data: patterns swamped by other 
stuff
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Beyond episode mining

• Comparative data mining: general 
framework

• Currently working on itemset mining

• Extending to supervised settings:

• Data harder to generate

• Augment theoretical/UCI guarantees
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