
Scalable	Data	Analy-cs:	On	the	
Role	of	Stra-fied	Data	Sharding	

Srinivasan	Parthasarathy	
Data	Mining	Research	Lab	
Ohio	State	University	

srini@cse.ohio-state.edu	
		
		

The	Data	Deluge:	Data	Data	Everywhere	

2	2	

180 zettabytes will be created in 2025 [IDC report]

600$  
to buy a disk drive that can store all of the world’s

music 

3	

[McKinsey Global Institute Special Report, June ’11]!

Data Storage is Cheap

Data does not exist in isolation.

4	

Data almost always exists in
connection with other data – integral

part of the value proposition.

5	

“There’s gold in them there mountains of data”
- Gill Press, Forbes Contributor

6	

Social networks Protein Interactions Internet

VLSI networks Scientific Simulations Neighborhood
graphs

7	

Big Data Challenge: All this data is only useful if we
can extract	interesting	and	actionable	information	
from	large	complex	data	stores	efficiently		
	
 Projected to be a $200B industry in 2020. [IDC report]

		

MapReduce,	MPI,	Spark,	etc.	

Distributed	Data	Processing	is	Central	
to	Addressing	the	Big	Data	Challenge	

8	

Source: blog.mayflower.de

However	distributed	data	
processing	itself	can	pose	

challenges!	
	

	The	Case	for	Stra-fied	Data	
Sharding	of	Complex	Big	Data	

Key	Challenge:	Data	Placement	(Sharding)	
•  Locality	of	reference	

–  Placing	related	items	in	proximity	improves	efficiency	
		

•  Mi-ga-ng	Impact	of	Data	Skew	
–  Cri-cal	for	big	data	workloads!	

•  Interac-ve	Response	Times	
–  Operate	on	a	sample	with	sta-s-cal	guarantees	

•  Heterogeneity	and	Energy	Aware	
–  Heterogeneous	compute	and	storage	resources	are	ubiquitous	

Example	–	Image	retrieval	
	

11	

Query Image

Heavy Load Light Load No Load No Load

Query Image

Equal Load Equal Load Equal Load Equal Load

•  Random partitioning
•  Load imbalance

•  Stratified partitioning
•  Load imbalance mitigated

Stra-fied	Sampling	in	a	Slide	

•  Roots in Stratified
Sampling (Cochran’48)

•  Group related data into
“homogeneous strata”

•  Sample each strata
•  Proportional

Allocation (shown)

•  Optimal Allocation

But,	here	we	want	to	par--on/shard	
•  For Locality

•  Elements within a strata are placed together

•  For Mitigating Skew

•  Each partition is a proportionally
 allocated stratified sample

•  For Interactivity
•  Optimally allocate one partition
•  Proportionally allocate the rest

•  Accounting for Energy/Heterogeneity
•  More on this later -- time permitting

Apps have varying requirements: ONE SIZE DOES NOT FIT ALL!

Our	Vision:	Stra-fied	Data	Placement	

Key	Value	Stores	
e.g.	Memcached	

Redis	

MPI	&	Par--oned	
Global	Addresses	
Space	Systems	

(PGAS)		
e.g.	Global	Arrays	

HADOOP/SHARK/
Azure	

(HDFS/RDD/Blob)	

STRATIFIED	DATA	SHARDING	&	PLACEMENT		

Key	Challenge:	Crea-ng	Strata		
(of	Complex	Data)	

•  What	about	Clustering?			
•  Non-trivial	for	data	with	complex	structure	
•  Poten-ally	expensive	
•  Variable	sized	en--es	

•  4-step	approach	[ICDE’13]	
1.  Convert	complex	data	into	a	(mul--)set	of	pivotal	elements	that	

capture	features-of-interest	
2.  Compute	sketch	of	set	(minwise	hashing)	
3.  Use	sketches	to	group	into	strata	(sketchsort/sketchcluster)	
4.  Par--on	strata	according	to	applica-on	needs	(e.g.	skew,	

balance,	locality)	

Step	1:	Pivo-za-on	
Problem:	Need	to	simplify	complex	
representa-on.	
Key	Idea:	Think	Globally	Act	Locally	
•  Sets	of	localized	features	that	collec-vely	

captures	global	picture	

Solu,on:		Specific	to	Data	&	Domain	
•  Documents/Text	

•  Shingling		[Broder	1998]	
•  Trees	(XML,	Linguis-c	data)	

•  Wedge	pivots	[Ta-konda’10]	
•  Graphs	(Web,	Social,	Molecules)	

–  Adjacency	lists	[Buehrer’08],	Wedge	
Decomposi-ons	[Seshadri’11],	Graphlets	
[Pruzlj’09]	

•  Spa-al/vector	data	
•  LSH[Indyk’99,	Chariker’02,	Satuluri’12]	

•  Images/Simula-on/Sequen-al	data	
•  Kernels	(Leslie’03),	KLSH	(Kulis’2010)	

P
IV

O
T

 T
R

A
N

S
FO

R
M

AT
IO

N
S

A

B C

L E

A

B C

L E F

.

.

.

.

Δ1

Δ25

DATA (Δ)

A

B C

A

F C

A

E C

A

F L

B

E F

A

E L

A

 B L

A

B C

A

E C
A

E L

A

 B L

.

.

.

.

(PS-1)

(PS-25)

PIVOT SETS (PS)

Step	2.	Sketching	

•  Problem:	Pivot	sets	may	be	
variable	length,	similarity	
computa-on	is	expensive:	
O(n^2)	

•  Key	Idea:	Use	Sketching	

•  Solu,on:	Locality	Sensi-ve	
Hashing	[Broder’98, Indyk’99, Charikar’01]	
–  Resulting representation is fixed-

length (k)
–  Tradeoff: Representation Fidelity

vs. Sketch size
–  Can handle kernel functions

[Kulis’09] and statistical priors
[Satuluri’12, Chakrabarti’15, ‘16]

A

B C

A

F C

A

E C

A

F L

B

E F

A

E L

A

 B L

A

B C

A

E C
A

E L

A

 B L

.

.

.

.

(PS-1)

(PS-25)

PIVOT SETS (PS)

 M
IN

W
IS

E
 H

A
S

H
IN

G
 o

n
P

IV
O

T
S

E
TS

{1050, 2020,
3130,1800}
 (SK-1)

{1050, 2020,
7225, 2020}
 (SK-25)

.

.

.

.

.

.
SKETCHES(SK)

18	

Minwise Hashing (Broder et al 98)

{ dog, cat, lion, tiger, mouse}!
[cat, mouse, lion, dog, tiger]!
[lion, cat, mouse, dog, tiger]!

Universe

A = { mouse, lion }

mh1(A) = min ({ mouse, lion }) = mouse!

mh2(A) = min ({ mouse, lion }) = lion!

19	

Key Fact

For two sets A, B, and a min-hash function mhi():

Unbiased estimator for Sim using k hashes:

Step	3:	Stra-fica-on	
Problem:	Group	related	en--es	
into	strata	
Key	Idea:	Inspired	by	W.	
Cochran’s	work	on	stra-fied	
sampling	[1940s]	

Solu,ons:		
•  Sort	pivot	sets	directly	(skip	sketch	

step)	–	Pivot	Sort	
•  Directly	use	output	of	LSH/Minwise	

Hash	–	SketchSort	
•  Cluster	sketches	with	fast	variant	of	

k-modes	–	SketchCluster	

S

K
E

TC
H

S
O

R
T

or
 S

K
E

TC
H

C
LU

S
TE

R

 S-1
 :
 :
 S-4
(Δ1, SK-1)
(Δ5, SK-5)
(Δ12,SK-12)
(Δ25,SK-25)
 :
 :
 :
 S-5
 :
 :
 :
 S-128
 :
 :
 :

 M
IN

W
IS

E
 H

A
S

H
IN

G
 o

n
P

IV
O

T
S

E
TS

{1050, 2020,
3130,1800}
 (SK-1)

{1050, 2020,
7225, 2020}
 (SK-25)

.

.

.

.

.

.
SKETCHES(SK
)

Step	4:	Sharding	and	Placement		
•  Problem:	How	to	par--on	stra-fied	data?	
•  Key	Ideas:	Guided	by	applica-on	hints	and	system	state.	
•  Solu,ons:	

1.   Propor,onal	Alloca,on:	Split	each	stratum	uniformly	
propor-onally	across	all	par--ons	à	mi-gates	skew	
	

2.   Op,mal	Alloca,on	for	first	strata,	propor-onal	for	
rest	[C77]	

	
3.   All-in-One	:	Place	each	stratum	in	its	en-rety	within	a	

par--on	
	
IMPORTANT	NOTE:	We	use	sketches	to	create	strata	–	but	
par,,oning	happens	on	original	data.	
	

S

K
E

TC
H

S
O

R
T

O
R

 S
K

E
TC

H
C

LU
S

TE
R

 S-1
 :
 :
 S-4
(Δ1, SK-1)
(Δ5, SK-5)
(Δ12,SK-12)
(Δ25,SK-25)
 :
 :
 :
 S-5
 :
 :
 :
 S-128
 :
 :
 :

PA

R
TI

TI
O

N
IN

G
 &

 R
E

P
LI

C
AT

IO
N

 P-1
 :
 P-2
 S-4
 S-7
 S-8
 S-12
 :

S-128
 P-3
 :
 :
 :
 P-8
 S-3
 S-4
 S-9
S-12
 :
S-127

P
IV

O
T

 T
R

A
N

S
FO

R
M

AT
IO

N
S

A

B C

L E

A

B C

L E F

.

.

.

.

Δ1

Δ25

DATA (Δ)

A

B C

A

F C

A

E C

A

F L

B

E F

A

E L

A

 B L

A

B C

A

E C
A

E L

A

 B L

.

.

.

.

(PS-1)

(PS-25)

PIVOT SETS (PS)

 M
IN

W
IS

E
 H

A
S

H
IN

G
 o

n
P

IV
O

T
S

E
TS

 {1050, 2020,
3130,1800}
 (SK-1)

{1050, 2020,
7225, 2020}
 (SK-25)

.

.

.

.

.

.
SKETCHES(SK) Strata (S)

Empirical	Evalua-on	

•  We	report	wall	clock	-mes	
•  All	-mes	include	cost	of	placement	
•  Evalua-ons	on	several	key	analy-c	tasks	

•  Top-K algorithms [Fagin], Outlier Detection [Ghoting’08, Otey’06],
Frequent Tree[Zaki’05, Tatikonda’09] and Graph Mining [Buehrer’06,
Yan’02, Nijlsson’04], XML Indexing [Tatikonda’07], Community
detection in Social/Biological data [Ucar’06, Satuluri’11], Web Graph
Compression [Chellapilla’08-09; Vigna’11, LZ’77], Itemset Mining
[Buehrer-Fuhry’15]

•  All	applica-ons	are	run	straight	out	of	the	box	–	the	only	thing	
the	user	specifies	relates	to	locality,	skew,	and	interac-on.

	

Frequent	Tree	Mining	
[Ta-konda’09]	

•  Used	Widely	
–  Transac-ons,	graphs,	trees	

•  Approach	
1.  Distribute	Data		

•  Propor-onal	
Alloca-on	

2.  Run	Phase	1	
3.  Exchange	Meta	Data	
4.  Run	Phase	2	
5.  Final	Reduc-on	

•  Sharding	mainly	impacts	steps	
1-3.	Steps	3	and	5	are	
sequen-al.	
	

Proposed	approaches	shows	100X	gains	

FTM	Phase	1:	Drilling	Down	

•  		

•  Data	Dependent	Workload	Skew	is	mi-gated	
•  Payload-aware	sharding		helps!	

WebGraph	Compression	[Vigna	et	
al	2011]	

Cri-cal	applica-on	for	search	
companies	
Key	Requirement:	Locality	
Approach:	
•  	 Distribute	data	via	placement	
•  	 Run	compression	algorithm					

	in	parallel	
•  	Parameters	(similar	to	FTM)	

–  Use	adjacency/triangle	pivots	
–  Use	All-in-one	par--oning	

	

A	segway	and	drill	down	(ICDE’15):		
Localized	Approximate	Miner	(LAM)	

•  First	bounded	space	&	-me	paoern	mining	
algorithm;	O(|D|	log	|D|)	

•  Parameter-free	
•  Scales	with	compute	resources	

– Near-linear	in	cores	&	machines	
•  Scales	with	data	size	

– Billions	of	transac-ons	&	items	
–  E.g.	67	min	on	one	machine;	1	min	on	a	cluster	

•  Two	parallel	phases:	Localize,	ApproxMining	

27

LAM	Phase	1:	Localize	
[SketchSort	and	Stra-fy!]	

1,2,3,7
1,2,5,7,8
1,2,4
.
.
.
1,7,8,5,3,22

Dataset D = Min-wise hash Matrix M =

T1
T2
T3
.
.
.
TN

.

.

.

1 . . . K

T1
T2
T3

TN

Sort T3
TN
T1

T2

Local Partition 1 Local Partition 2 Local Partition 3
28

LAM	Phase	2:	Approx	Mining	I	

LAM	Phase	2:	Approx	Mining	II	

•  Mined	(p,	tlist)	pairs	ordered	by	u7lity	
•  Add	p	to	paoern	set	P	
•  In	dataset	D,	Remove	p	from	each	row	in	tlist	
•  Replace	with	a	pointer	to	p	in	the	paoern	set	
•  Append	P	to	D	and	run	LAM	again	on	new	D	
	
Iterate	mul-ple	-mes	for	beoer	compression	

30

Experiments	

•  Nine	transac-onal	datasets	from	UCI,	FIMI	
•  Compare	LAM	to	state-of-the-art	

– Krimp	[Vreeken	et	al.	2011]	
– Slim	[Smets	et	al.	2012]	
– CDB-Hyper	[Xiang	et	al.	2008]	

•  Five	web	graph	datasets	(|V|~107,	|E|~109)	
•  PLAM	(Parallel	LAM):	Cluster	implementa-on	

•  Compare	to	Closed	Itemset	Mining	

•  Compression,	execu-on	-me,	scalability	
	

31

UCI/FIMI:	Compression	

 0.1

 1

 10

Accidents

Adult
Anneal

Breast

Iris Kosarak

Mushroom

Pageblocks

Tic-Tac-Toe

Twitter

Co
m

pr
es

si
on

 R
at

io
 (l

og
 s

ca
le

)

LAM 5
Krimp
SLIM

CDB Hyper

LAM achieves better compression on most
datasets

32

UCI/FIMI:	Execu-on	-me	

 0.1

 1

 10

 100

 1000

 10000

 100000

Accidents Adult Anneal Kosarak Mushroom

Ex
ec

ut
io

n
Ti

m
e

(lo
g

sc
al

e)
LAM 5
Krimp
SLIM

CDB Hyper

LAM is one or more orders of magnitude
faster

33

24x

Itemset results for various supports, grouped by set size.

34

Web:	Comparing	LAM	to	Closed	Sets	

 1

 10

 100

 1000

 10000

 100 1000

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Support

Closed Sets Gen.
Closed Sets Comp.

LAM
PLAM8core

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 100 1000

C
om

pr
es

si
on

 R
at

io

Support

Closed Sets
LAM1Iteration

LAM5Iterations

35

Smallest web graph dataset EU2005: |V| = 863K, |E| = 19M

•  For σ < 100, Closed Sets slow at generating patterns
•  Even slower at compressing
•  LAM produces better compression: 2x w/ 1 iter, 4x w/ 5

iter

Web:	Comparing	LAM	to	Closed	Sets	

36

Smallest web graph dataset EU2005: |V| = 863K, |E| = 19M

Larger datasets: Better results than closed sets, in less time.

Web:	Scalability	

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 50 100 150 200 250

Sp
ee

du
p

Machines

EU2005
UK2006

ARABIC2005
SK2005
IT2004

 2

 3

 4

 5

 6

 7

 8

 1 1.5 2 2.5 3 3.5 4 4.5 5

C
om

pr
es

si
on

 R
at

io

Pass Number

EU2005
UK2006

ARABIC2005
SK2005
IT2004

•  Near-linear scalability to hundreds of machines

•  Compression ratios increase over multiple passes

37

LAM:	thoughts	and	future	work	

•  First	paoern	mining	algorithm	to	run	in	
linearithmic	-me	in	the	size	of	the	input	

•  Levers	Stra-fied	Data	Par--oning.	
•  Parameter-free	–	saves	domain	expert	-me	
•  Scales	near-linearly	to	

– Hundreds	of	cores	&	machines	
– Billions	of	transac-ons	and	items	

•  Future	work:	Can	we	extend	similar	ideas	to	
trees,	graphs	and	sequences?	

38

Energy-	and	Heterogeneity-	Aware	
Par--oning	(ICPP’17)	

•  Modern	Datacenters	are	
increasingly	heterogeneous	
–  Computa-on	
–  Storage	
–  Green	Energy	Harves-ng		

•  Sharding	and	placement	while	
accoun-ng	for	heterogeneity	
is	challenging	
–  Pareto	Op-mal	Model	

Overview	of	Pareto	Framework	

Pareto	Func-on:	Math	

[Gori’11]

42	

Evalua-on	–	Pareto	Fron-ers	

Swiss (Tree Mining) RCV: Text Mining UK: Web Analytics

Take	Home	Message	
•  In	todays	analy-cs	world	data	has	complex	structure
•  Stratitifed Data Placement has a central role to play

–  Over 2 orders of magnitude improvement over state-of-art for a
multitude of analytic tasks. First to explore this idea for placement.

–  Preliminary results on heterogeneous- energy-aware systems
show significant promise!

Key	Value	Stores	
e.g.	Memcached	

Redis	

MPI	&	Par--oned	
Global	Addresses	
Space	Systems	

(PGAS)		
e.g.	Global	Arrays	

HADOOP/SHARK/
Azure	

(HDFS/RDD/Blob)	

STRATIFIED	DATA	SHARDING	&PLACEMENT		

Thanks	
•  Organizers	
•  Audience	
•  Former	Students	(who	did	all	the	work!)	

– Ye	Wang	(AirBnB),	A.	Chakrabarty	(MSR),	D.	Fuhry	
(OSU).	

•  Funding	agencies	
– NSF,	DOE,	NIH,	Google,	IBM	

