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Merci Tout La Monde!

® Thank you for the invitation to speak.
® Thanks to the OFIl for not deporting me yesterday
® Thanks to the Collegium de Lyon for my fellowship

» Offering to high-level foreign
researchers the possibility to focus
fully on their innovative and original
research project

OBJECTIVES
OF THE
COLLEGIUM

» Building, during medium-length stays

(5 or 10 months), a community of
fellows from all scientific fields, with a
predominance of human and social
sciences (or other sciences in
interaction with them).

» Developing long-term partnerships
between the labs of the University of
Lyon (certified as university of

 yeesre home scientific institutiops




Big Picture of My Talk

® The traditional machine learning pipeline -
when is it good

® Some newer problems that need human
Involvement

® What role humans can play

® Some ideas from our group and
limitations

® A Future Approach? The CP Revolu

tion of |




The Typical Learning
Pipeline

Typical Linear Machine Learning

Process
%
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Sign Recognition for Google
Car

® My student Aubrey Gress spent the summer
working at Google so the next driverless car can
read signs.

RAA A

Easy problem
No strong domain knowledge

Easy to annotate instances |
- Lots of data | |




Where The Typical ML
Pipeline Does Not Work Well

Typical Linear Machine Learning
Process

‘%

Intelligent Small Data Neuroscience Trajectory
ISR EHR Records f (NSF, NMRC, (GPS)

(Ssgzﬁgli) (NMRC) Pennington) (ESI)




Learning in ITS

[With ONR and SoarTech]
® The future of education?
¢ Used extensively for small children and DoD!

® Trying to score a person’s abilities at many skills

Question 1: There are 3 large marbles, 2 medium marbles and 5 small marbles in a bag. If one of the
marbles is chosen randomly, what is the probability that a small marble is chosen?

3/10

1/5

1/3

1/2




Learning in ITS

[With ONR and SoarTech]
® The future of education?
¢ Used extensively for small children and DoD!

® Trying to score a person’s abilities at many skills

In Moose Juice, practice counting, addition
& subtraction by following recipes!




Essentially a Big Transfer
Learning or Matrix Completion

Problem
Skills
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But a Domain Expert Can Help
Some People Are Smarter!

HEEEREEEEERE

f(Zs_i) = X

f(Zs i)=Y

f(Zs_i)=2Z



But a Domain Expert Can Help
Some People Are Smarter!
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Functional Network Discovery
[With NMRC, Pennington Instiute]

Take functional scans
Co-register with
structural scans

Measure correlations over
voxels to construct edge
weights

Stack Images Over Time
Each voxel is a time series

Cutting the graph creates a
| round community



Functional Network Discovery

Synchronized co-activation of spatially separated
regions is associated with a functional network

Why Human Guidance?
a) Co-activation

b) Lack of wiring
c) Spatial boundaries

10 20 30 40 50 60 70

Liu et al.: Regional homogeneity, functional connectivity and imaging markers of Alzheimer's
disease: A review of resting-state fMRI studies. Neuropsychologia 46, 1648-1656 (2008).
Venkataraman, A. et al.: Exploring Functional Connectivity in fMRI via Clustering. In ICASSP

20009.



So We Need To Add Human’s
To ML? How?




Some Typical Ways

1) Human in the Loop Learning

Typically Active Learning
Yahoo! FREP, ONR
ICDM 11, IJCAI 13, SDM 13, ICML 13 ..

. ‘

l[ Answers

Questions

Human



2) Transfer Learning

Transfer in a Related Model
NSF, ONR - Active Transfer Learning Program
ICDM 12, KDD 11/12/13/14 AAAI-15 ...




2) Transfer Learning

Transfer in a Related Model
NSF, ONR - Active Transfer Learning Program
ICDM 12, KDD 11/12/13/14 AAAI-15 ...

Data

Source
Model




3) Constraining the Model

Adding Human Guidance via Constraints
SDM 05, ECML 07, KDD 10/11/13a-b/15/16/17

4

Domain Knowledge
Constraints

19

Data




Some Directions of My
Group with Limitations

* Relative guidance - asking humans easier
annotations/questions

e [JCAI 13, ICDM 16, AAAI 18

® [arge scale transfer learning - asking humans what
tasks are related

e AAAI 15, ICML 13, AAAI 10, TIPS 16

® Constrained clustering and block modeling -
asking humans what their expectations of
clustering should be

® More recently KDD15,17 and ICDM 17




Supervised Learning and Labeling

* Challenge: Size of output space impacts # annotations
* Binary classification is simple — only two options

Is this
a cat?




Supervised Learning and Labeling

* Challenge: Size of output space impacts # annotations
 Multilabel classification is harder

What type of
cat is this?




Supervised Learning and Labeling

* Challenge: Size of output space
 Regression: output could be any real number

How old
is this
cat?




|Probabilistic Formulations of Regression
with Mixed Guidance, Gress, Davidson,
ICDM 2016]

* We assume we have some small set of labeled data
(x1,y1), ..., (x,,, ) @s well as a set of unlabeled data x,,, 1, ..., x;,

» But generating accurate labels for the unlabeled data is too
expensive or not possible

* How can we make labeling in regression easier for humans?
 Quridea: ask easier questions




Our Work: Bound

* Bound:is f(x;) € [a;, b;]?
* e.g.“Is this house more than $200,000, but less than
$300,0007"

* Providing an exact price may be too demanding a task, so
allowing the user to provide a range of values can better
model the user’s uncertainty in their prediction.

€ [$200,000,$300,000]



Our Work: Relative

* Relative:is f(x;) > f(x;)?
* e.g. "Which of these two houses is more expensive?”

« Evenifthe user can't accurately predict the price of a house,
they can probably tell if one house is more valuable than
another




Our Work: Neighbor

* Neighbor: s |£(x;) - f(x;)] < If () - fi)l?
* e.0. “Ishouse A closer in price to house B or house C?’

 (ivena set of 3 objects, the user can provide which pair of
objects’ responses are closest together.




Our Work: Similar

v Similar:is |f (x;) - f(x;)] < s?

+ e.g. “Are the prices of these two houses within $50,000 of
each other?”

 The user may be able to tell if two houses are in roughly the
same price range




In the End You Have Training
Data With Mixed Annotations

Features  Annotation - Age

[20-25]




In the End You Have Training
Data With Mixed Annotations

Features  Annotation - Age

[20-25]

f(2) = 1(1)
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In the End You Have Training
Data With Mixed Annotations

Features  Annotation - Age

[20-25]

f(2) = 1(1)

f(3) > f(1)

| 1(4) - (2




In the End You Have Training
Data With Mixed Annota’@ons

Features  Annotation - Age (0
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Our Work: Mathematical
Formulation

s We derived new loss functions for these four forms of guidance.
* E.g. Relative guidance with the Ridge estimator:
_ 2 ! 2
. muinHXw — Y|| + A4 Zi,jep log o((xi — x]-) w) + /12||w||

o: The logistic function 1
P: Set of relative pairs
A1, A,: Regularization parameters

Regularizer

All sorts of tricks: logistic function, logs
Why?
Guarantee convexity and convergence proofs



Our Work: Other Losses

* We derived similar loss functions for the other 3 forms of guidance
Bound: f(xl) € [ai,bi]
o(b; = f(x) = o(a; = f(x))
+ Similar: |[f(x;) — f(x)| < s
(5= (£ + 1))~ o (= = (£C) + 1))
Neighbor: |f(xi) — f(xj)| < |f(x) = fir)l
1—H (fGo) - (),
1—H(f(a) + £ () - 2f (x)

H: CDF of exponential distribution (because we used exponential noise)

min{



Our Work: Experimental Results

Typical results (more in the
paper) using our guidance
with ridge regression

Relative and Similar guidance
seem to be very valuable

Neighbor is more valuable
than relative

Bound worked well on
synthetic data, but performed
no better than a simple
baseline on real data
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Feature Level Guidance

[Gress, Davidson, Human Guided Linear Regression with
Feature-level Constraints, AAAI 2018]

Can we train a regression model with little labeled
training data? y =wi1x2 + w2x2 + w3x3 .. wmxm

Our work: leverage feature level guidance provided
by the user
* “The fuzzy cat’s fur has a negative impact on age”
 “Square footage has a larger positive impact on house price

than number of bathrooms”
Three forms of guidances to constrain w:
* Sign: “Feature i has a positive impact on the labe

 Relative: “Feature i has a more positive impact on the
label than feature j”

* Pairwise-Sign: “Features i and j has the same impact
(positive or negative) on the label”

IH



Feature Level Guidance

[Gress, Davidson, Human Guided Linear Regression_with
Feature-level Constraints, AAAI 2018]

Can we train a regression model with little labeled
training data? y = wilx2 + w2x2 + w3Ixs .. wmxm

Our work: leverage feature levei\guidance provided
by the user
*  “The fuzzy cat’s fur has asme&gative impdct on age”
 “Square footage has ¢ \arger pasitive impact on house price
than number of bgthroomgt
Three forms of guidance:
 Sign: “Feature i hés,a positive impact on the label”

 Relative: “Featuiie i has a more positive impact on the
\anel than featare j”

* Pairwise-Sign: “Features i and j has the same impact
(positive or negative) on the label”



Results

Nonnegative

Ridge

[asso

PSRC: p Signs

PRCR: p Pairs

PPSCR: p pairs

Synthetic | 0.183(0.030) | 0.179(0.029) | 0.180(0.029) | 0.141(0.026) | 0.155(0.031) | 0.161(0.030)
BH 0.212(0.022) | 0.202(0.036) | 0.183(0.023) | 0.149(0.018) | 0.176(0.029) | 0.163(0.020)
Wine 0.101(0.013) | 0.100(0.013) | 0.105(0.013) | 0.088(0.010) | 0.093(0.011) | 0.091(0.010)
Concrete | 0.255(0.022) | 0.275(0.020) | 0.293(0.018) | 0.220(0.017) | 0.232(0.019) | 0.229(0.018)
Housing | 0.432(0.041) | 0.473(0.043) | 0.482(0.049) | 0.409(0.03%) | 0.451(0.042) |  0.399(0.037)
[TS 0.568(0.092) | 0.625(0.095) | 0.700(0.118) | 0.525(0.089) | 0.540(0.001) | 0.570(0.093)
Heart 2.129(0.220) | 2.159(0.220) | 2.190(0.187) | 2.007(0.191) | 2.044(0.200) | 2.124(0.229)

e Qur methods:

e PSRC: Sign guidance

e PRCR: Relative Guidance

e PPSCR: Pairwise-sign Guidance

* Sign guidance performed best overall, but all forms
of guidance improved accuracy




Non-Expert Active Learning

[Buyue Qian, Xiang Wang, Fei Wang, Hongfei Li, Jieping Ye, Peter
Walker, lan Davidson: Active Learning from Relative Queries.

JCAI 2013]
Does not generate any new labels \ /
Answerable via crowd-sourcing / \

Main Galaxy Set of neighbors

Question: (partially) order the neighbors based
on their visual similarities to the main Galaxy?

Uncertainty in
Labeling

Absolute Query
Strategy for
Relative Queries
Don’t Work



Our Active Scheme

Relative query strategy: which instance to focus on?
X 1S the set of points, N the set of neighborhoods @
Approximate all minimum set covers (via LP, log n)
How many times does a point appear in the solutions/w,
Weighted set coverage: i.e. connectivity

Query influential point’s neighborhood W, e

Instance a is closer to I than b, we have w,, >=w,, @ W,
w;(J*—J%) >0
Encode neighborhood guidance: I=w,a+w,b+w,.C

J'isa single-entry vector whose i-th entry is 1 and all other entries O

Learning of graph weights:

min w;C'w
W

s.t. w;1 = 1;



Take Away Message

We can inject human guidance a number of
ways
e underlying solver limits how
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Adding Constraints to
Clustering




History

® We've been looking at adding constraints to
clustering (particularly graphs) for a while

e KDD 10, AAAI 13, DMKD 14 [Constrained Spectral
Methods]

SDM 13 [Multi-view Pareto Optimization]

ICDM 12, SDM 14 [Active/Self Taught]

ICDM 14 [Weighted Spectral Methods]

KDD 15 [Contrast and Consensus Formulations]
KDD 17 [Constrained Block Models]

ICDM 17 [Scaling to huge graphs using RPPM]

® |'ll overview the work on graphs.
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® |'ll overview the work on graphs.




Intuition behind Segmenting a
Graph — Think of a Social Network

ONEEY.O
PORO
: &)

Imagine this Is your ego network in

Facebook. Want to Create two dlnner
parties .




Intuition behind Segmenting a
Graph




Intuition behind Constrained
Graph Segmentation

Maybe 6 divorced 4 because they were having an affair
with 3

- Find a constrained cut that:

Minimizes the cost (friendships links broken

o i
2ONSIralniS. e




Intuition behind Constrained
Graph Segmentation

Maybe 6 divorced 4 because they were having an affair
with 3
Find a constrained cut that:

Minimizes the cost (friendships links broken

e CONStrae




Relaxing the Problem
Spectral Clustering

Objective for spectral clustering
(Shi and Malik, 2000)

0 1 1 0 0

argmin VTl_}v, 10100
opN 4|t 1010
- 1/2 O 0 1 0 1

st. viv=1, v.L D/°1. 000 1 0

0o 0 0 1 1

| —
_
»)
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Constrained Spectral
Clustering

Objective for spectral clustering

(Shi and Malik, 2000)

. T =
argmin v Lv,
veRN

A=

st viv= 1, v L DY?1.

Finding
normalized min-
cut

|

. T +
argminv’ Lv,

Lower-bounding

how well the

cCoorRKO
OO OO =
OO = O
N e ==
— O~ OO0

constraints in Q Normahzmg

S.t.

are satisfied

|

TTI

lOn—w—tOOO.

Ruling out the
trivial solution

I

viQv > a,

A% v—vol

. Normalized cuts and image segmentation. PAMI,




Objective:

argminv’ Lv, sit. v Qv > a, v’ v = vol(G).
veRN

Introducing Karush-Kuhn-Tucker (KKT)

(Stationarity) Lv — /\QV — pv =0,
(Primal feasibility) VTQV >, viv = vol(G),
(Dual feasibility) A > 0,

(Complementary slackness) )\(VTQV —«a) =0.

Let 7= —%’01(9)
The problem becomes
Lv =\ (Q —

v This is a generalized

vol(G)
eigenvalue

viv = vol(G),




Some Take Aways

We relaxed a discrete optimization problem
® No guarantees of optimality after the rounding

We were limited to conjunctions of constraints

We were limited to binary relationship constraints

We were limited to making one objective a
constraint

® We did a Pareto optimization formulation [SDM 13]
but the code is challenging difficult to implement




Network Discovery in Spatial

Temporal Data
|Bai, Davidson, Unsupervised Network Discovery, KDD 17/]

Geographic Space

Positive Dipole Mode

Many observations over time of the same locations
We can convert them into a graph as shown before



Regular Block Modelling

. %HM

Input:
X: n x n weighted graph, edge weights are correlations

Output:
F: n x k block indicator matrix
block’s indicator matrix is stored




Re

Spatial Data

10 20 30 40 5 60 70

10 20 30 40 5 60 70

gular Block Modeling on

10 20 30 40 5 60 70



Adding in Side Information

- “Affinity” matrix
- Absolute Correlations

. Graph: Nby N .
Kernel/Graph Regularization

Minimize ||®‘
F>0M>0
s.t. FTF —1

. Cluster indicator matrix
- Nby k

- [0,1]

- Column-wise orthogonal

- Mixing matrix
- kbyk
- Nonnegative

- Associations betwee
cl '“




Requiring the Blocks to Be
Spatially Contiguous

< | - M

Minimize|X—FMF!| F—l—ﬁtr(FT@)F)
F>0,M>0

ot FIF-T1

9]

09

09 0% 02
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Requiring the Blocks to Be
Spatially Contigu@s&‘,@

9]




Recap

® Relative guidance - asking humans easier
annotations/questions

e [JCAI'13, ICDM 1o, AAAI 18

® [arge scale transfer learning - asking humans what
tasks are related

e AAAI 15, ICML 13, AAAI 10, TIPS 16

® Constrained block models and clustering - asking
humans what their expectations of clustering
should be

® More recently KDD15,17 and ICDM 17




Some Directions of My
Groups with Limitations

® Relative guidance - asking humans easier
annotations/questions

e [JCAI 13, ICDM 16, AAAI 18

® The results didn’t match out intuition. Why?

® Tricks to ensure convexity and convergence proofs
meant we couldn’t model the human knowledge as we
wanted to

® We kept on adding in regularizers and having to tune
the hyper-parameters




Some Directions of My
Groups with Limitations

® Constrained clustering - asking humans what their
expectations of clustering should be

® More recently KDD15,17 and ICDM 17

® The constraints had to be in a very specific form

® Some constraints we couldn’t even model (i.e.
constraints on M in block models)




A Solution?

A growing interest in using Constraint Solvers (CP/SAT/
MIP) in ML and DM

Meetings

e Dagstuhl 11201 (2011): Constraint Programming meets
Machine Learning and Data Mining

e Dagstuhl 14411 (2014): Constraints, Optimization and Data
* Workshops

CoCoMile 2012 ECAI, CoCoMile 2013 AAA
 Journal Special Issue

* AlJ - Combining Constraint Solving, Mining & Learning 2017/
e CP 2017/

* Special track on ML/DM + CP
« Two dozen+ papers in the last five years on the topic at:

- |JCAI, AAAI, KDD, ICDM, SDM etc.
« [JCAI 2017 tutorial (Siegfried, Tias and myself)

* https://sites.uclouvain.be/cp4ddm/tutorial/ijcail 7/




Benefits and Uses of CP For
ML/DM

® Because the search algorithm is branch and bound
no mandated restrictions on objective function and

constraints form

® But clever filtering algorithms are needed for
scalability

® Three main uses explored so far

® A) Use constraints as a dialog mechanism to allow
complex feedback

e B) Using CP to model novel problems

® C)CP as a post-processor to DM/ML




Use #A1 - New Constraints

[Duong, Vrain and Davidson, ECAI16]

. :t’.,;"' - ® New types of constraints
SRR e My dinner party problem: ‘Segment by
3 YA ego network into k groups (k dinner
Ny Y, . parties) may yield poor results

® So require each group has:
® 1) #Males = #Females,
e 2) Diameter wrt age < 10 and

e 3) Everyone has at least g people at the
party with at least r common interests

® These are very different cardinality,
density etc.

® Definitely not linear or encodable ina
matrix. '

AR s T B -




Use #A2 - For Block Modeling

[Work with Peter Stuckey’s group at U.Melb]

][

gure 2: Some examples of image graph structures: a) ring,
b) h1era1'chy c) stick, d) star, e) core-periphery




Use #B3 - Outlier
Description Problem

® Two sets of points: normal, abnormal
® (Question: What make the normal set normal

® Example: Represent a car by vector describing part
locations

® What common properties do the non-lemons have that
the outliers do not.

® Related to

® Discovering Outlying Aspects in Large Datasets. Nguyen Xuan
Vinh, Jeffrey Chan, Simone Romano, James Bailey, Christopher
Leckie, Kotagiri Ramamohanarao and Jian Pei. Data Mining and

Knowledge Discovery, 30(6), pp. 1520-155, 2016




The Benefits of CP

Kuo, Chia-Tung, and lan Davidson. "A Framework for Outlier
Description Using Constraint Programming.” AAAI. 2016.

L r and upper bound on # NN for
Objective Maximize kNﬁ normal and outliers

Variables F = [fla f27 sy f|5|] = {0’ 1}|S|
Projection vect kvin < ko <kn <k

NN distance—> 0 < r < rpaz
Constraints  Vax € N, |Nr(xz,r)| > kn
Yy € O, [Nr(y,r)| < ko

Multi-criteria optimization over k, r and F

X




Human in Loop Extension

Kuo, Chia-Tung, and lan Davidson. "A Framework for Outlier
Description Using Constraint Programming." AAAI. 2016.

Objective Maximize ky — ko

Variables  F = [f1, f2,..., fis)] € {0, 1}/
Fmin < ko < kN < kmaz
0 <7< "rmna

Constraints  Va; € N, [Np(zi,r)| > (1 —w;)kn

n ‘\
E Ww; S Wmazx <
1=1

| can ignore some points
Yy € O, | Np(y,r)| < ko

From the NN constraint
Multi-criteria optimization over k, r, F and w
)Iz'lag normal points for clarification by SME

X | m X X




Two Sub Space Explantion

Kuo, Chia-Tung, and lan Davidson. "A Framework for Outlier
Description Using Constraint Programming." AAAIl. 2016.

Objective Maximize kn — ko

Variables F=|fi, ..., fis)),G =91,-..,9s1] €10, 14151
kmin < ko < kN < Emaxz
0<rpr,r¢ < Tmazx

Constraints Va € N, |Np(x,rr)| > kn AND |Na(x,rc)| > kn
Vy € O, [Nr(y,rr)| < ko OR |Na(y,ra)| < ko

Multi-criteria optimization over k, r, F and G




Use #C4 - HIL Clustering

A Framework for Minimal Clustering Modification via Constraint
Programming, Tom Kuo et. al. AAAl 17/

| Diameter
Favorite | _ | Cardinality
Clustering I > Clustering TU | > Summary S Density
Algorithm ' ' ' '
{—a U
- \_Feedback
Modified _ Clustering 4 Modified
Clustering TT' < | Modification < | Summary S'
Approach

Minimally modify IT to obtain TT’ to satisfy S’

miné'lmize d(n,n’

subject to T satisfies S’




Intractable Problem

A Framework for Minimal Clustering Modification via Constraint
Programming, Tom Kuo et. al. AAAl 17/

The reclustering problem where ¢ = 2 is NP-complete.

Proof idea: reduction to Covering Points by Unit Squares.
Even for very limited settings

Theorem (2)

Suppose the number of dimensions along which the maximum

diameter must be reduced is a variable {. The reclustering problem
is NP-complete for any k > 3.

v

Proof idea: similarly reduction to Covering Points by Unit
Hypercubes.



Formulation

A Framework for Minimal Clustering Modification via Constraint

Programming, Tom Kuo et. al. AAAl 17/
n

el LM
=1 Number of modifications
subject to
Ve=1,....k, Vi=1,...,n/Clc,i] =1[IN[i] = ]
Vi=1,....n, 2li] = V[ % N[l
Ve=1,....k, Vt=1,... f,

Lle.t] = min {Cle, (X7, t] = Mult])} + Mult]
Ale, 1] = max {Cle,i|(X]i,t] = Mi[t])} + Milt]

Smallest/largest values for

Hlc, t] — L[c, t] < D'[c, t]




Results

A Framework for Minimal Clustering Modification via Constraint
Programming, Tom Kuo et. al. AAAl'1/

Data: Facebook egonets?
Initial clustering: 4-way clustering from spectral clustering on
friendship graph
Modification: balance (i.e. bounds diameters) two
features/dimensions, gender and some language
Results:

(a) Initial (b) Modified

Figure: Visualization of clusterings on Facebook egonets graph.



Conclusion

Many problems require human involvement as:
® Data limitations (size and annotations)

® Strong domain expertise

® Challenging problem

We covered several directions
® Fasier human annotation

® Transfer learning

® (Constraints

But formulations in procedural and MP formulations are
limited

CP is a potential solution?

® For those in Lyon - I’'m giving a shortened version of the
~ |JCAI tutorial @ Lyon 1 on December 8th?




Merci and
Questions

davidson@cs.ucdavis.edu

www.cs.ucdavis.edu/~davidson




Combinations

Mueller, Marianne, and Stefan Kramer. "Integer Linear
Programming Models for Constrained Clustering.” Discovery
science 2010. Vol. 6332. 2010.

First to use the idea of PM as a pre-processor?

< Each patternis a

n'iaximal

Y cewand yotential cluster

Compute some
distance

over the instances
covered by it

TID

Let this be refe




Combinations

Mueller, Marianne, and Stefan Kramer. "Integer Linear
Programming Models for Constrained Clustering.” Discovery
science 2010. Vol. 6332. 2010.

Non-overlapping formulation

instance 1 covered by at most 1 pattern | Some measure of cluster quality
. . ]_
maximize = (Wmae — uﬁ{
subject to (i)\\Aa: <1 X Is a binary indicatof vector for patterns
(ii) Az > (v) z € {0,1}"
(iii) 17z =k (vi) y € {0,1}™
(iv) 11y >|m - minCompl

|
y set to 1 means an instance is covered by a cluster
Cover at least minCompl 9% of instances but not all of them




