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Anomaly detection 

Find the data that do not conform to the normal behavior. 

 
 
 
 
 
 
 

Applications: 
• Health care 
• Intrusion detection in cyber security 
• Fraud detection 

– Insurance  
– Credit card transactions 
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Supervised learning 

 

• Goal is to find a function 𝑓 ∶ 𝑋 → 𝑌 

• We assume that there is an unknown joint distribution 𝑃 over 
𝑋 × 𝑌 

• We have a training set of M examples 𝑥𝑖 , 𝑦𝑖 𝑛=1
𝑀 ∈ 𝑋 × 𝑌 𝑀 

i.i.d. according to 𝑃 

 

• Classification: discrete 𝑦 

 

• Regression: continuous 𝑦 
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Loss function and risk minimization 
 

 

 



Loss function and risk minimization 
• Loss function 𝐿(𝑓 𝑥 , 𝑦): agreement between prediction 𝑓(𝑥) and 

desired output 𝑦. 
 

• Common loss functions 
      are accuracy  based 

 
• Anomaly detection can 
     be presented as a binary  
     problem with 𝑁 ≫ 𝑃 

 
• In anomaly detection,  
     we would rather look at 

– 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  

– 𝑅𝑒𝑐𝑎𝑙𝑙  

– 𝐹𝛽 𝑠𝑐𝑜𝑟𝑒  

 

 

 

Example of different loss functions 



Loss function and risk minimization 
• Loss function 𝐿(𝑓 𝑥 , 𝑦): agreement between prediction 𝑓(𝑥) and 

desired output 𝑦. 
 

• Common loss functions 
      are accuracy  based 

 
• Anomaly detection can 
     be presented as a binary  
     problem with 𝑁 ≫ 𝑃 

 
• In anomaly detection,  
     we would rather look at 

– 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  

– 𝑅𝑒𝑐𝑎𝑙𝑙  

– 𝐹𝛽 𝑠𝑐𝑜𝑟𝑒  

 

 

 

Example of different loss functions 



Loss function and risk minimization 
• Loss function 𝐿(𝑓 𝑥 , 𝑦): agreement between prediction 𝑓(𝑥) and 

desired output 𝑦. 
 

• Common loss functions 
      are accuracy  based 

 
• Anomaly detection can 
     be presented as a binary  
     problem with 𝑁 ≫ 𝑃 

 
• In anomaly detection,  
     we would rather look at 

– 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  

– 𝑅𝑒𝑐𝑎𝑙𝑙  

– 𝐹𝛽 𝑠𝑐𝑜𝑟𝑒  

 

 

 

Example of different loss functions 



Loss function and risk minimization 
• Loss function 𝐿(𝑓 𝑥 , 𝑦): agreement between prediction 𝑓(𝑥) and 

desired output 𝑦. 
 

• Common loss functions 
      are accuracy  based 

 
• Anomaly detection can 
     be presented as a binary  
     problem with 𝑁 ≫ 𝑃 

 
• In anomaly detection,  
     we would rather look at 

– 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  

– 𝑅𝑒𝑐𝑎𝑙𝑙  

– 𝐹𝛽 𝑠𝑐𝑜𝑟𝑒  

 

 

 

Example of different loss functions 



Pitfall of the classification approach 

 

 

 

 

 

 

 

 



Pitfall of the classification approach 
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Use another approach than classification: learning to rank 
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+ millions more links 

Predicted most relevant  
links for a query: 

+  millions more transactions 

Predicted most probable  
fraudulent transaction over a day: 

Card ID Date Amount Shop. 

120983 21/09/2017 23€ 20193 

328903 21/09/2017 3€ 29103 

328032 21/09/2017 14.2€ 9023 

390293 21/09/2017 11€ 124 

182393 21/09/2017 110€ 202 
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645367 21/09/2017 4€ 1089 

887644 21/09/2017 34.3€ 230 

257546 21/09/2017 3.2€ 399 

655655 21/09/2017 40€ 394 

356578 21/09/2017 49.99€ 12 

884733 21/09/2017 73.99€ 9000 
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• How do we assess the quality of a ranked list? 
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AP is better suited to our problem. However, it is not 
differentiable. 



Smooth approximation of 𝐴𝑃 
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• Sigmoid 
 

I 𝑓 𝑥𝑖 < 𝑓 𝑥𝑗 ≈
1

1 + 𝑒
𝛼 𝑓 𝑥𝑗 −𝑓 𝑥𝑖

= 𝜎 𝑓 𝑥𝑗 − 𝑓 𝑥𝑖  

 
with 𝛼 a smoothing parameter 
 

1 − 𝐴𝑃 𝑠𝑖𝑔 =
1

𝑃
 
 𝜎 𝑓 𝑥𝑗 − 𝑓 𝑥𝑖
𝑁
𝑗=1

 𝜎 𝑓 𝑥ℎ − 𝑓 𝑥𝑖
𝑀
ℎ=1

𝑃

𝑖=1

  

 

Complexity : 𝑂(𝑃 × 𝑁) 
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• Exponential 

 

I 𝑓 𝑥𝑖 < 𝑓 𝑥𝑗 ≤ 𝑒𝑓 𝑥𝑗 −𝑓 𝑥𝑖  

 

1 − 𝐴𝑃 𝑒𝑥𝑝 =
 𝑒𝑓 𝑥𝑛𝑁
𝑛=1

 𝑒𝑓 𝑥ℎ𝑀
ℎ=1

 

 

Pros: 𝑂(𝑃 + 𝑁) 

Cons:  Gradient explosion  
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Stochastic gradient boosting 

 

Why ? 

• Optimizing in function space instead of parameter space 

• Adaptive algorithm 

• SGB prevents the gradients from exploding 

 

 

Weak learners ℎ are combined linearly: 

 
𝑓𝑡 𝑥 = 𝑓𝑡−1 𝑥 + 𝛼𝑡ℎ𝑡 𝑥  
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Thank you for your attention 


