Efficient top rank optimization with gradient boosting for supervised anomaly detection

Jordan Fréry, Amaury Habrard, Marc Sebban, Olivier Caelen and Liyun He-Guelton

Find the data that do not conform to the normal behavior.

Find the data that do not conform to the normal behavior.

Find the data that do not conform to the normal behavior.

Applications:

- Health care
- Intrusion detection in cyber security

Find the data that do not conform to the normal behavior.

Applications:

- Health care
- Intrusion detection in cyber security

1

Find the data that do not conform to the normal behavior.

Applications:

- Health care
- Intrusion detection in cyber security
- Fraud detection
 - Insurance
 - Credit card transactions

• Goal is to find a function $f : X \to Y$

- Goal is to find a function $f : X \to Y$
- We assume that there is an unknown joint distribution P over $X \times Y$

- Goal is to find a function $f : X \to Y$
- We assume that there is an unknown joint distribution P over $X \times Y$
- We have a training set of M examples $\{x_i, y_i\}_{n=1}^M \in (X \times Y)^M$ i.i.d. according to P

- Goal is to find a function $f : X \rightarrow Y$
- We assume that there is an unknown joint distribution P over $X \times Y$
- We have a training set of M examples $\{x_i, y_i\}_{n=1}^M \in (X \times Y)^M$ i.i.d. according to P
- Classification: discrete y
- Regression: continuous y

 Loss function L(f(x), y): agreement between prediction f(x) and desired output y.

- Loss function L(f(x), y): agreement between prediction f(x) and desired output y.
- Common loss functions are accuracy based

- Loss function L(f(x), y): agreement between prediction f(x) and desired output y.
- Common loss functions are accuracy based
- Anomaly detection can be presented as a binary problem with N >> P

- Loss function L(f(x), y): agreement between prediction f(x) and desired output y.
- Common loss functions are accuracy based
- Anomaly detection can be presented as a binary problem with N >> P
- In anomaly detection, we would rather look at
 - Precision
 - Recall
 - F_{β} score

Example of different loss functions

Pitfall of the classification approach

Pitfall of the classification approach

• Experts often need to assess the potential anomalies

Pitfall of the classification approach

• Experts often need to assess the potential anomalies

Use another approach than classification: learning to rank

Q

Predicted most relevant links for a query:

anom	aly deter	ction			
Web	Images	Vidéos			

Anomaly detection - Wikipedia

In data mining, anomaly detection (also outlier detection) is the identification of items, events or observations which do not conform to an expected pattern or other ... W https://en.wikipedia.org/wiki/Anomaly_detection

Anomaly detection & monitoring service

ROLE Anomaly Detection : A Survey - Northwestern University Anomaly Detection : A Survey & 3 with universed noise in the data. Noise can be defined as a phenomenon in data which is not of interest to the analyst, but acts as ... Cli cucia secondrivesteme deulyproject/DMS/publications/AnomahyOtetectio...

Azure Machine Learning Anomaly Detection API | Microsoft Docs

Anomaly Detection API is an example built with Microsoft Azure Machine Learning that detects anomalies in time series data with numerical values that are uniformly ...

https://docs.microsoft.com/en-us/azure/machine-learning/machine-lear...

Anomaly Detection - msdn.microsoft.com

This topic describes the modules provided in Azure Machine Learning for anomaly detection. Anomaly detection encompasses many important tasks in machine ... https://msdn.microsoft.com/en-us/library/azure/Dn913096.aspx

Time Series Anomaly Detection - msdn.microsoft.com Anomaly detection is the problem of finding patterns in deta that do not conform to a model of "normal" behavior. Typical approaches for detecting such... mitrosoft.com/en-us/library/imt775197.aspx

+ millions more links

Predicted most relevant links for a query:

anomaly detection	ų
Neb Images Vidéos	
Anomaly detection - Wikipedia	
In data mining, anomaly detection (also outlier detection) is the identified observations which do not conform to an expected pattern or other	cotion of items, events or
W https://en.wikipedia.org/wiki/Anomaly_detection	
Anomaly detection & monitoring service	
Anomaly detection in real-time by predicting future dysfunctional. Dete monitor any time series metrics. Using analytics and math ttps://anomaly.io	ct unusual patterns and
EDE Anomaly Detection : A Survey - Northwestern	University
Anomaly Detection : A Survey ¢ 3 with unwanted noise in the data. Noi phenomenon in data which is not of interest to the analyst, but acts as .	se can be defined as a
Cucis.ece.northwestern.edu/projects/DMS/publications/AnomalyDe	tectio
Azure Machine Learning Anomaly Detection API	Microsoft Docs
Anomaly Detection API is an example built with Microsoft Azure Machin anomalies in time series data with numerical values that are uniformly.	ne Learning that detects
https://docs.microsoft.com/en-us/azure/machine-learning/machine-l	lear
Anomaly Detection - msdn.microsoft.com	
This topic describes the modules provided in Azure Machine Learning f Anomaly detection encompasses many important tasks in machine	for anomaly detection.
https://msdn.microsoft.com/en-us/library/azure/Dn913096.aspx	
Time Series Anomaly Detection - msdn.microsoft.	com
Anomaly detection is the problem of finding patterns in data that do no	t conform to a model of
"normal" behavior. Typical approaches for detecting such	

+ millions more links

Predicted most probable fraudulent transaction over a day:

Card ID	Date	Amount	Shop.
120983	21/09/2017	23€	20193
328903	21/09/2017	3€	29103
328032	21/09/2017	14.2€	9023
390293	21/09/2017	11€	124
182393	21/09/2017	110€	202
432445	21/09/2017	43€	20193
645367	21/09/2017	4€	1089
887644	21/09/2017	34.3€	230
257546	21/09/2017	3.2€	399
655655	21/09/2017	40€	394
356578	21/09/2017	49.99€	12
884733	21/09/2017	73.99€	9000

+ millions more transactions

Predicted most relevant links for a query:

/eb Images Vidéos	
Anomaly detection - Wikipedia	
n data mining, anomaly detection (also outlier detection) is the identification observations which do not conform to an expected pattern or other	n of items, events or
W https://en.wikipedia.org/wiki/Anomaly_detection	
Anomaly detection & monitoring service	
Anomaly detection in real-time by predicting future dysfunctional. Detect un nonitor any time series metrics. Using analysics and meth) https://enomely.io	usual patterns and
E Anomaly Detection : A Survey - Northwestern Ur	iversity
Anomaly Detection : A Survey ¢ 3 with unwanted noise in the data. Noise ca whenomenon in data which is not of interest to the analyst, but acts as	in be defined as a
cucis.ece.northwestern.edu/projects/DMS/publications/AnomalyDetections)
Azure Machine Learning Anomaly Detection API Mig	crosoft Docs
Anomaly Detection API is an example built with Microsoft Azure Machine Le anomalies in time series data with numerical values that are uniformly	arning that detects
https://docs.microsoft.com/en-us/azure/machine-learning/machine-lear	
Anomaly Detection - msdn.microsoft.com	
his topic describes the modules provided in Azure Machine Learning for an Anomaly detection encompasses many important tasks in machine	nomaly detection.
n https://msdn.microsoft.com/en-us/library/azure/Dn913096.aspx	
Fime Series Anomaly Detection - msdn.microsoft.con	n
Anomaly detection is the problem of finding patterns in data that do not con normal' behavior. Typical approaches for detecting such	form to a model of
https://msdn.microsoft.com/en-us/library/mt775197.aspx	

Predicted most probable fraudulent transaction over a day:

Card ID	Date	Amount	Shop.
120983	21/09/2017	23€	20193
328903	21/09/2017	3€	29103
328032	21/09/2017	14.2€	9023
390293	21/09/2017	11€	124
182393	21/09/2017	110€	202
432445	21/09/2017	43€	20193
645367	21/09/2017	4€	1089
887644	21/09/2017	34.3€	230
257546	21/09/2017	3.2€	399
655655	21/09/2017	40€	394
356578	21/09/2017	49.99€	12
884733	21/09/2017	73.99€	9000

+ millions more transactions

• How do we assess the quality of a ranked list?

• Area under the ROC curve

$$AUCROC = \frac{1}{PN} \sum_{i=1}^{P} \sum_{j=1}^{N} I\left(f(x_i) > f(x_j)\right)$$

• Area under the ROC curve

$$AUCROC = \frac{1}{PN} \sum_{i=1}^{P} \sum_{j=1}^{N} I\left(f(x_i) > f(x_j)\right)$$

Burges 2010

• Area under the ROC curve

$$AUCROC = \frac{1}{PN} \sum_{i=1}^{P} \sum_{j=1}^{N} I\left(f(x_i) > f(x_j)\right)$$

Burges 2010

• Area under the ROC curve

$$AUCROC = \frac{1}{PN} \sum_{i=1}^{P} \sum_{j=1}^{N} I\left(f(x_i) > f(x_j)\right)$$

• Average precision (AUCPR)

$$AP = \frac{1}{P} \sum_{i=1}^{P} precision@k$$

• Area under the ROC curve

$$AUCROC = \frac{1}{PN} \sum_{i=1}^{P} \sum_{j=1}^{N} I\left(f(x_i) > f(x_j)\right)$$

• Average precision (AUCPR)

Burges 2010

Burges 2010

AP is better suited to our problem. However, it is not differentiable.

• Average precision

$$AP = \frac{1}{P} \sum_{i=1}^{P} \frac{\sum_{j=1}^{P} I(f(x_i) < f(x_j))}{\sum_{h=1}^{M} I(f(x_h) < f(x_i))}$$

• Average precision

$$AP = \frac{1}{P} \sum_{i=1}^{P} \frac{\sum_{j=1}^{P} I(f(x_i) < f(x_j))}{\sum_{h=1}^{M} I(f(x_h) < f(x_i))}$$

• Sigmoid

• Average precision

$$AP = \frac{1}{P} \sum_{i=1}^{P} \frac{\sum_{j=1}^{P} I(f(x_i) < f(x_j))}{\sum_{h=1}^{M} I(f(x_h) < f(x_i))}$$

• Sigmoid

$$I\left(f(x_i) < f(x_j)\right) \approx \frac{1}{1 + e^{\alpha\left(f(x_j) - f(x_i)\right)}} = \sigma\left(f(x_j) - f(x_i)\right)$$

with α a smoothing parameter

• Average precision

$$AP = \frac{1}{P} \sum_{i=1}^{P} \frac{\sum_{j=1}^{P} I(f(x_i) < f(x_j))}{\sum_{h=1}^{M} I(f(x_h) < f(x_i))}$$

• Sigmoid

$$I\left(f(x_i) < f(x_j)\right) \approx \frac{1}{1 + e^{\alpha\left(f(x_j) - f(x_i)\right)}} = \sigma\left(f(x_j) - f(x_i)\right)$$

with α a smoothing parameter

$$1 - \widehat{AP}_{sig} = \frac{1}{P} \sum_{i=1}^{P} \frac{\sum_{j=1}^{N} \sigma\left(f(x_j) - f(x_i)\right)}{\sum_{h=1}^{M} \sigma\left(f(x_h) - f(x_i)\right)}$$

• Average precision

$$AP = \frac{1}{P} \sum_{i=1}^{P} \frac{\sum_{j=1}^{P} I(f(x_i) < f(x_j))}{\sum_{h=1}^{M} I(f(x_h) < f(x_i))}$$

• Sigmoid

$$I\left(f(x_i) < f(x_j)\right) \approx \frac{1}{1 + e^{\alpha\left(f(x_j) - f(x_i)\right)}} = \sigma\left(f(x_j) - f(x_i)\right)$$

with α a smoothing parameter

$$1 - \widehat{AP}_{sig} = \frac{1}{P} \sum_{i=1}^{P} \frac{\sum_{j=1}^{N} \sigma\left(f(x_j) - f(x_i)\right)}{\sum_{h=1}^{M} \sigma\left(f(x_h) - f(x_i)\right)}$$

Complexity : $O(P \times N)$

• Average precision

$$AP = \frac{1}{P} \sum_{i=1}^{P} \frac{\sum_{j=1}^{P} I(f(x_i) < f(x_j))}{\sum_{h=1}^{M} I(f(x_h) < f(x_i))}$$

• Average precision

$$AP = \frac{1}{P} \sum_{i=1}^{P} \frac{\sum_{j=1}^{P} I\left(f(x_i) < f(x_j)\right)}{\sum_{h=1}^{M} I\left(f(x_h) < f(x_i)\right)}$$

• Exponential

• Average precision

$$AP = \frac{1}{P} \sum_{i=1}^{P} \frac{\sum_{j=1}^{P} I\left(f(x_i) < f(x_j)\right)}{\sum_{h=1}^{M} I\left(f(x_h) < f(x_i)\right)}$$

• Exponential

$$I\left(f(x_i) < f(x_j)\right) \le e^{f(x_j) - f(x_i)}$$

• Average precision

$$AP = \frac{1}{P} \sum_{i=1}^{P} \frac{\sum_{j=1}^{P} I\left(f(x_i) < f(x_j)\right)}{\sum_{h=1}^{M} I\left(f(x_h) < f(x_i)\right)}$$

• Exponential

$$I\left(f(x_i) < f(x_j)\right) \le e^{f(x_j) - f(x_i)}$$
$$1 - \widehat{AP}_{exp} = \frac{\sum_{n=1}^{N} e^{f(x_n)}}{\sum_{h=1}^{M} e^{f(x_h)}}$$

• Average precision

$$AP = \frac{1}{P} \sum_{i=1}^{P} \frac{\sum_{j=1}^{P} I\left(f(x_i) < f(x_j)\right)}{\sum_{h=1}^{M} I\left(f(x_h) < f(x_i)\right)}$$

• Exponential

$$I\left(f(x_i) < f(x_j)\right) \le e^{f(x_j) - f(x_i)}$$
$$1 - \widehat{AP}_{exp} = \frac{\sum_{n=1}^{N} e^{f(x_n)}}{\sum_{h=1}^{M} e^{f(x_h)}}$$

Pros: O(P + N)

• Average precision

$$AP = \frac{1}{P} \sum_{i=1}^{P} \frac{\sum_{j=1}^{P} I\left(f(x_i) < f(x_j)\right)}{\sum_{h=1}^{M} I\left(f(x_h) < f(x_i)\right)}$$

Exponential

$$I\left(f(x_i) < f(x_j)\right) \le e^{f(x_j) - f(x_i)}$$

$$1 - \widehat{AP}_{exp} = \frac{\sum_{n=1}^{N} e^{f(x_n)}}{\sum_{h=1}^{M} e^{f(x_h)}}$$

Pros: O(P + N)Cons: Gradient explosion

Why?

- Optimizing in function space instead of parameter space
- Adaptive algorithm
- SGB prevents the gradients from exploding

Why?

- Optimizing in function space instead of parameter space
- Adaptive algorithm
- SGB prevents the gradients from exploding

Weak learners *h* are combined linearly:

$$f_t(x) = f_{t-1}(x) + \alpha_t h_t(x)$$

At iteration t - 1 we find the residuals for all $\{x_i\}_{i=1}^{M}$

$$g_t(x_i) = \frac{\partial L(y_i, f_{t-1}(x_i))}{\partial f_{t-1}(x_i)}$$

At iteration t - 1 we find the residuals for all $\{x_i\}_{i=1}^M$

$$g_t(x_i) = \frac{\partial L(y_i, f_{t-1}(x_i))}{\partial f_{t-1}(x_i)}$$

We find a model h_t with its corresponding weight such that: $h_t = argmin_h \sum_{\substack{i=1 \ M}}^{M} -g(x_i)h(x_i)$ $\alpha_t = argmin_\alpha \sum_{\substack{i=1 \ M}}^{M} L(y_i, f_{t-1}(x_i) + \alpha h_t(x_i))$

	#examples	Positives ratio	#Features
Pima	767	34%	8
Breast cancer	286	30%	9
HIV	3,272	13.3%	8
Heart cleveland (4 vs all)	303	4.3%	13
w8a	64000	3%	300
Fraud	2,000,000	0.2%	40

	#examples	Positives ratio	#Features
Pima	767	34%	8
Breast cancer	286	30%	9
HIV	3,272	13.3%	8
Heart cleveland (4 vs all)	303	4.3%	13
w8a	64000	3%	300
Fraud	2,000,000	0.2%	40

- Evaluation metrics:
 - AUCROC
 - Average precision

	#examples	Positives ratio	#Features
Pima	767	34%	8
Breast cancer	286	30%	9
HIV	3,272	13.3%	8
Heart cleveland (4 vs all)	303	4.3%	13
w8a	64000	3%	300
Fraud	2,000,000	0.2%	40

- Evaluation metrics:
 - AUCROC
 - Average precision
 - Pos@Top, the number of positives before the first negative appears

	#examples	Positives ratio	#Features
Pima	767	34%	8
Breast cancer	286	30%	9
HIV	3,272	13.3%	8
Heart cleveland (4 vs all)	303	4.3%	13
w8a	64000	3%	300
Fraud	2,000,000	0.2%	40

- Evaluation metrics:
 - AUCROC
 - Average precision
 - Pos@Top, the number of positives before the first negative appears
 - P@k, with k equal to the number of positive examples

	#examples	Positives ratio	#Features
Pima	767	34%	8
Breast cancer	286	30%	9
HIV	3,272	13.3%	8
Heart cleveland (4 vs all)	303	4.3%	13
w8a	64000	3%	300
Fraud	2,000,000	0.2%	40

- Evaluation metrics:
 - AUCROC
 - Average precision
 - Pos@Top, the number of positives before the first negative appears
 - P@k, with k equal to the number of positive examples
- Models for comparison

• Datasets

	#examples	Positives ratio	#Features
Pima	767	34%	8
Breast cancer	286	30%	9
HIV	3,272	13.3%	8
Heart cleveland (4 vs all)	303	4.3%	13
w8a	64000	3%	300
Fraud	2,000,000	0.2%	40

- AUCROC
- Average precision
- Pos@Top, the number of positives before the first negative appears
- P@k, with k equal to the number of positive examples
- Models for comparison
 - GB-logistic (Friedman 2001)

• Datasets

	#examples	Positives ratio	#Features
Pima	767	34%	8
Breast cancer	286	30%	9
HIV	3,272	13.3%	8
Heart cleveland (4 vs all)	303	4.3%	13
w8a	64000	3%	300
Fraud	2,000,000	0.2%	40

- AUCROC
- Average precision
- Pos@Top, the number of positives before the first negative appears
- P@k, with k equal to the number of positive examples
- Models for comparison
 - GB-logistic (Friedman 2001)
 - Rankboost (Freund et al 2003)

• Datasets

	#examples	Positives ratio	#Features
Pima	767	34%	8
Breast cancer	286	30%	9
HIV	3,272	13.3%	8
Heart cleveland (4 vs all)	303	4.3%	13
w8a	64000	3%	300
Fraud	2,000,000	0.2%	40

- AUCROC
- Average precision
- Pos@Top, the number of positives before the first negative appears
- P@k, with k equal to the number of positive examples
- Models for comparison
 - GB-logistic (Friedman 2001)
 - Rankboost (Freund et al 2003)
 - LambdaMART-AP (Burges 2010)

• Datasets

	#examples	Positives ratio	#Features
Pima	767	34%	8
Breast cancer	286	30%	9
HIV	3,272	13.3%	8
Heart cleveland (4 vs all)	303	4.3%	13
w8a	64000	3%	300
Fraud	2,000,000	0.2%	40

- AUCROC
- Average precision
- Pos@Top, the number of positives before the first negative appears
- P@k, with k equal to the number of positive examples
- Models for comparison
 - GB-logistic (Friedman 2001)
 - Rankboost (Freund et al 2003)
 - LambdaMART-AP (Burges 2010)
 - SGBAP

Results

Dataset	Algorithm	AUCROC	AP	Pos@Top	P@k
	GB-Logistic		71.3%	3.9%	66.1%
	RankBoost		72.8%	6.2%	65.9%
Pima	LambdaMART-AP		73.4%	4.1%	65.6%
	SGBAP		71.2%	5.8%	64.6%
	GB-Logistic		50.9%	9.3%	44.6%
Proof	RankBoost		48.4%	4.6%	46.3%
Dreast	LambdaMART-AP		52.8%	8.6%	51.9%
cancer	SGBAP		56%	10.2%	49.8%
	GB-Logistic		55.6%	3%	53.9%
	RankBoost		54.6%	4%	53.1%
HIV	LambdaMART-AP		42.9%	0.8%	48.7%
	SGBAP		57.4%	5.4%	54.5%
	GB-Logistic		16.4%	1.3%	10%
Hoort	Rankboost		17.4%	1.5%	9.7%
cleveland	LambdaMART-AP		18.1%	3.8%	13.3%
	SGBAP		21.9%	4.8%	20.2%
	GB-Logistic		73.8%	5.3%	70.9%
w8a	RankBoost		76.5%	3.9%	72.7%
	LambdaMART-AP		_	_	_
	SGBAP		83.5%	17.8%	79.7%
	GB-Logistic		14.7%	0.09%	24.1%
Fraud	RankBoost		15.6%	0.05%	24.5%
	LambdaMART-AP		_	_	_
	SGBAP		17.5%	0.6%	32%

Results

Dataset	Algorithm	AUCROC	AP	Pos@Top	P@k
Pima	GB-Logistic	82.8%	71.3%	3.9%	66.1%
	RankBoost	83.5%	72.8%	6.2%	65.9%
	LambdaMART-AP	81.8%	73.4%	4.1%	65.6%
	SGBAP	82.8%	71.2%	5.8%	64.6%
	GB-Logistic	68.2%	50.9%	9.3%	44.6%
Broost	RankBoost	64.9%	48.4%	4.6%	46.3%
Dreast	LambdaMART-AP	67.3%	52.8%	8.6%	51.9%
cancer	SGBAP	71.2%	56%	10.2%	49.8%
HIV	GB-Logistic	85.9%	55.6%	3%	53.9%
	RankBoost	85.9%	54.6%	4%	53.1%
	LambdaMART-AP	82.2%	42.9%	0.8%	48.7%
	SGBAP	86.6%	57.4%	5.4%	54.5%
Heart cleveland	GB-Logistic	75.4%	16.4%	1.3%	10%
	Rankboost	81.1%	17.4%	1.5%	9.7%
	LambdaMART-AP	72.7%	18.1%	3.8%	13.3%
	SGBAP	77.9%	21.9%	4.8%	20.2%
	GB-Logistic	95.4%	73.8%	5.3%	70.9%
w8a	RankBoost	97.1%	76.5%	3.9%	72.7%
	LambdaMART-AP	_	_	_	_
	SGBAP	97%	83.5%	17.8%	79.7%
Fraud	GB-Logistic	88.1%	14.7%	0.09%	24.1%
	RankBoost	88.3%	15.6%	0.05%	24.5%
	LambdaMART-AP	_	_	_	_
	SGBAP	68.8%	17.5%	0.6%	32%

Conclusion

• We proposed a learning to rank approach for anomaly detection problems

Conclusion

- We proposed a learning to rank approach for anomaly detection problems
- One of our approximations is linear and can scale to big datasets

Conclusion

- We proposed a learning to rank approach for anomaly detection problems
- One of our approximations is linear and can scale to big datasets
- As the data are unbalanced, experiments show that our method performs better in the top rank

Perspectives

• Automatic decision threshold based on expert criteria

Perspectives

- Automatic decision threshold based on expert criteria
- Adaptation to online learning

Perspectives

- Automatic decision threshold based on expert criteria
- Adaptation to online learning
- Open the proprietary dataset with an international data science competition

Thank you for your attention