PURCHASE SIGNATURES OF RETAIL CUSTOMERS

DECADE 11/10/2017

<u>Clément Gautrais</u>, P. Cellier, R. Quiniou, T. Guyet, A. Termier Lacodam/SemLIS team

 $\bigcirc \exists |R|SA$

Motivations

- Retailers have a lot of data on customers purchases
- Detecting individual customer habits is crucial
 - Personalized marketing
 - Attrition detection/characterization
- Challenges
 - Customers are not perfectly regular
 - Dataset size (~300 GB)

Motivations

- How often does a customer replenish his/her products?
 - Give coupon on the right product at the right time
 - Strong attrition signal on favourite products
- Find the favourite products of a customer
- Find the replenishment period

Existing methods

- Pattern mining methods
 - Top-k [6]
 - Periodic pattern [5]
 - Frequent itemsets [1]
 - Episode mining [9]
- Item recommendation methods
- Drawbacks
 - Many results
 - Regularity definition too strict or too loose
 - Products have to be bought in the same transaction
 - Non interpretable models

Proposed model: signatures

- Find favourite products of a customer
 - Bought several times
 - Not necessarily in the same transaction

- Find recurrent symbols and their occurrences in a symbolic sequence, with no predefined period
 - A set of product and its occurrences as results
 - Period adapts to the sequence rhythm

 k-segmentation [8]: split a sequence of n transactions into k segments

Timestamp	Receipts	Timestamp	Receipts
1	Bread, Milk, Orange Juice, Soup	1	Bread, Milk, Orange Juice, Soup
2	Butter, Apple, Soup, Orange Juice	2	Butter, Apple, Soup, Orange Juice
3	Bread, Sponge	3	Bread, Sponge
4	Bread, Butter, Soup	4	Bread, Butter, Soup
5	Orange Juice, Eggs	5	Orange Juice, Eggs
6	Bread, Milk, Eggs	6	Bread, Milk, Eggs

A 3-segmentation of a customer purchase sequence

• Segment representative: $\mu(S_i) = \bigvee_{t \in S_i} t$

	Timestamp	Receipts	
	1	Bread, Milk, Orange Juice, Soup	
517	2	Butter, Apple, Soup, Orange Juice	
	3	Bread, Sponge	
S2 T	4	Bread, Butter, Soup	
00	5	Orange Juice, Eggs	
53	6	Bread, Milk, Eggs	
	_		
	Segment inc	lex Segment representatives $\mu(S_i)$	
	1	Bread, Milk, Orange Juice, Soup, Butter, Apple	
	2	Bread, Butter, Soup, Sponge	
	3	Bread, Orange Juice, Eggs, Milk	

• Adequation: $A(\alpha, S) = |\Lambda_{S_i \in S} \mu(S_i)|$

Segment index	Segment representatives $\mu(S_i)$
1	Bread, Milk, Orange Juice, Soup, Butter, Apple
2	Bread, Butter, Soup, Sponge
3	Bread, Orange Juice, Eggs, Milk

• $A(\alpha, S) = |\Lambda_{S_i \in S} \mu(S_i)| =$

|{Bread, Milk, Orange Juice, Soup, Butter, Apple} ∩ {Bread, Butter, Soup, Sponge} ∩

 $\{Bread, Orange Juice, Egges, Milk\} = |\{Bread\}| = 1$

Segment index	Segment representatives $\mu(S_i)$
1	Bread, Milk, Orange Juice, Soup, Butter, Apple
2	Bread, Butter, Soup, Sponge
3	Bread, Orange Juice, Eggs, Milk

Signature model – Sequence segmentation • $S_{opt}(\alpha, k) = \arg \max_{S \in S_{n,k}} A(\alpha, S)$

Timestamp	Receipts
1	Bread, Milk, Orange Juice, Soup
2	Butter, Apple, Soup, Orange Juice
3	Bread, Sponge
4	Bread, Butter, Soup
5	Orange Juice, Eggs
6	Bread, Milk, Eggs

+ *k* = 3

• Solve $S_{opt}(\alpha, k)$

	Timestamp	Receipts	
	1	Bread, Milk, Orange Juice, Soup	
2 Butter, Apple, Soup, Orange Juice		Butter, Apple, Soup, Orange Juice	
ſ	3	Bread, Sponge	
S2 1	4	Bread, Butter, Soup	
	5	Orange Juice, Eggs	
S3 -	6 Bread, Milk, Eggs		
	Segment inc	ex Segment representatives $\mu(S_i)$	
	1	Bread, Milk, Orange Juice, Soup, Butter, Apple	
	2	Bread, Butter, Soup, Sponge	
	3 Bread, Orange Juice, Eggs, Milk		

 $A(\alpha, S) = |\{Bread\}| = 1$

	Timestamp	Receipts	
S1 -	1	Bread, Milk, Orange Juice, Soup	
٦	2	Butter, Apple, Soup, Orange Juice	
S2 -	3	Bread, Sponge	
L	4	Bread, Butter, Soup	
	5	Orange Juice, Eggs	
53 T	6 Bread, Milk, Eggs		
	Segment inc	lex Segment representatives $\mu(S_i)$	
	1	Bread, Milk, Orange Juice, Soup	
	2	Bread, Apple, Sponge, Orange Juice, Butter, Soup	
	3	Bread, Orange Juice, Eggs, Milk	

 $A(\alpha, S) = |\{Bread, Orange Juice\}| = 2$

	Timestamp	Rec	eipts	
S1 -	1	Brea	ad, Milk, Orange Juice, Soup	
	2	Butt	Butter, Apple, Soup, Orange Juice	
52 1	3	Brea	Bread, Sponge	
ſ	4	Bread, Butter, Soup		
S3 -	5	Orange Juice, Eggs		
l	6	Bread, Milk, Eggs		
	_			
	Segment inc	dex	Segment representatives $\mu(S_i)$	
	1		Bread, Milk, Orange Juice, Soup	
	2		Bread, Apple, Sponge, Orange Juice, Butter, Soup	
	3		Bread, Orange Juice, Eggs, Milk, Soup	

 $A(\alpha, S) = |\{Bread, Orange Juice, Soup\}| = 3 = arg \max_{S \in S_{6,3}} A(\alpha, S)$

- Mining algorithms: exact approaches
 - Dynamic programming $O(n^2k)$
 - Pattern growth $O(2^{|I|})$

- Mining algorithms: other approaches
 - Greedy algorithms O(n * log(n))
 - Non exact algorithms with bounded error $O(n^{\frac{4}{3}}k^{\frac{5}{3}})$

- T_i is a boolean vector
 - $(p_1, p_2) = (1, 1, 0, 0)$ with 4 products
- $\mu(S_i) = \bigvee_{t \in S_i} t$
- $A(\alpha, S) = \left| \bigwedge_{S_i \in S} \mu(S_i) \right|$
- $S_{opt}(\alpha, k) = \arg \max_{S \in S_{n,k}} A(\alpha, S) \rightarrow \text{optimized with dynamic programming [8]}$

Timestamp	Receipts
1	Bread, Milk, Orange Juice, Soup
2	Butter, Apple, Soup, Orange Juice
3	Bread, Sponge
4	Bread, Butter, Soup
5	Orange Juice, Eggs
6	Bread, Milk, Eggs

+ {Bread, Orange Juice, Soup}

Signature - example

- JOKER MULTIFRUIT BRK OVALINE1L
- SIROP SPORT CITROR BTL 1L
- BRETS CHIPS POULET BRAISE 6X25
- RANOU ROTI PORC 6TR 240G
- MINI BABYBEL X12 264G
- IDS CREME CASSIS 20D 70CL
- MT BLANC VANILLE MINI 6X125G
- J.ROZE S.HACHE LETENDR X10 1K
- 1ER PRIX BEURRE 1/2S PQ 500G
- ECR/AD COLOSSE CHOC.BLC4X120
- RANOU ROTI DE PORC 4TR 160G
- PASQUIER BISCOTTE MINC.36T 300
- RANOU JBON MON PARIS DD6T270G
- KINDER PINGUI CHOCOLAT 8X30G
- PASQUIER 12 CROISSANTS 480G

Customer from a dataset of 149 942 customers of a French retailer

Signature advantages

- Find regularities in seemingly no regular data
- No window size
- Simple output

Periodic does not work, signature works

Sky-signature

- Extension of the signature model
 - How to choose the right number of repetitions?
 - Don't choose, try them all
 - Too many results
 - Pattern selection with a skyline [7]

Timestamp	Receipts
1	Bread, Milk, Orange Juice, Soup
2	Butter, Apple, Soup, Orange Juice
3	Bread, Sponge
4	Bread, Butter, Soup
5	Orange Juice, Eggs
6	Bread, Milk, Eggs

Sky-signature

- Sky-signature
 - Compromise between adequation and number of segments
- = Pareto front

Sky-signature

Sky-signature

- Algorithm based on dynamic programming
 - Similar to the sequence segmentation
 - Same complexities as classic signature with $k = \max_{freq(I)}$

- Algorithm based on pattern mining approach
 - Pattern-growth approach $O(2^{|I|})$

Sky-signature use case

- Dataset
 - Speeches of D.Trump and H.Clinton in the 2016 presidential campaign
- Objective
 - Find the recurrent topics of each candidate
- Analysis pipeline
 - Apply topic modeling methods on the dataset to get a more abstract overview of each speech main topics
 - Compute the sky-signature on each candidate series of speeches
 - Analyze!

Sky-signature use case

- Politician signatures
- "Hierarchy" of main topics

		Clinton
No	Recurrences (k)	Signature topics
1	57	Woman as President
2	30	1 + Future challenges for President
3	16	2 + Communities and police
4	12	3 + Childcare and education
		Trump
No	Recurrences (k)	Signature topics
No 1	Recurrences (k) 48	Signature topics Social policy and critics
No 1 2	Recurrences (k) 48 28	Signature topicsSocial policy and critics1 + New economic policy
No 1 2 3.1	Recurrences (k) 48 28 15	Signature topicsSocial policy and critics1 + New economic policy2 + Illegal immigration
No 1 2 3.1 3.2	Recurrences (k) 48 28 15 15	Signature topicsSocial policy and critics1 + New economic policy2 + Illegal immigration2 + Education policy
No 1 2 3.1 3.2 4.1	Recurrences (k) 48 28 15 15 9	Signature topicsSocial policy and critics1 + New economic policy2 + Illegal immigration2 + Education policy3.2 + Illegal immigration (3.1 + 3.2)

Sky-signature use case

Information from segments

Segment size and frequency provides information

Conclusion

- Signatures
 - Find regularities in data, with no constraint on the periodicity
 - No window size

Sky-signatures

- Removes the frequency parameter
- More complex model
- Applied signatures on real use cases
 - Retail use case
 - Natural language processing

Perspectives

- Add quantities in the model
- Get rid of the number of segments parameter
 - First steps with MDL encoding

Thank you for your attention

Questions?