#### Large-Scale Graph Mining

#### Vincent Leroy







## FREQUENT SUBGRAPH MINING (FSM)

- Graphs represent complex data
  - Chemical compounds, proteins
  - Social networks
  - Knowledge bases (ontologies)
- Frequent Subgraph Mining
  - Discover regularities in the structure of a graph
    - Properties and interactions (citations graph, organization structure)
    - Privacy (social networks)
    - Link prediction (recommender systems, linked data)



#### 10M entities, 120M facts



570M entities, 18B facts (2012)



#### Caffeine molecule C<sub>8</sub>H<sub>10</sub>N<sub>4</sub>O<sub>2</sub>



### FSM: KNOWLEDGE BASE



### FSM: KNOWLEDGE BASE



#### FSM: DEFINITION

• Find all frequent (support  $\geq \epsilon$ ) subgraphs



Input Graph



 $Support(P_1) = 2$ 

#### SUPPORT DEFINITION

• Find all frequent (support  $\geq \epsilon$ ) subgraphs



### SUPPORT DEFINITION

• Find all frequent (support  $\geq \epsilon$ ) subgraphs



Minimum Image Support: min(#mappings) Anti-monotony



### SUPPORT DEFINITION

• Find all frequent (support  $\geq \epsilon$ ) subgraphs



Minimum Image Support: min(#mappings) Anti-monotony



 $Support(P_2) = 2$ 

#### CHALLENGE

Computing the support requires keeping track of embeddings



#### CHALLENGE

- Computing the support requires keeping track of embeddings
  - Up to factorial(V) embeddings for a single pattern due to symmetry (ex: 10! > 3M)
  - Mining larger patterns and dealing with high-degree vertices is costly



#### CHALLENGE

- Computing the support requires keeping track of embeddings
  - Up to factorial(V) embeddings for a single pattern due to symmetry (ex: 10! > 3M)
  - Mining larger patterns and dealing with high-degree vertices is costly





. . .

### STATE OF THE ART

- Arabesque [SOSP 2015] Use more resources: parallel and distributed computation
- ScaleMine [SC 2016] Simplify the problem: compute a minimal set of embeddings to reach the support threshold ε
  - Lose accurate information on support which is important for many applications

#### CONTRIBUTIONS

- Address the core algorithmic and data structure problem of FSM with a new algorithm: SAMi
  - Define 5 primitive operations to recursively enumerate patterns
  - Propose a compressed representation of embeddings that circumvents the cost of enumerating embeddings





#### EMBEDDINGS REPRESENTATION



#### There must be a more compact way to express this



There must be a more compact way to express this



#### AUTOMATON REPRESENTATION OF EMBEDDINGS

- Deterministic finite automaton
  - Alphabet: all vertex identifiers from the input graph
  - Words accepted: embeddings of the pattern\*



#### AUTOMATON REPRESENTATION OF EMBEDDINGS

- Deterministic finite automaton
  - Alphabet: all vertex identifiers from the input graph
  - Words accepted: embeddings of the pattern\*



We save memory, can we do more?

#### PATTERN GENERATION

- Patterns generated recursively by adding edges
  - Graph structure represented using DFS codes (gSpan, 2002)
  - Different codes can describe the same graph
  - Examples on unlabeled undirected graphs, but generalizable



- Patterns generated recursively by adding edges
  - Graph structure represented using DFS codes (gSpan, 2002)
  - Different codes can describe the same graph
  - Examples on unlabeled undirected graphs, but generalizable





- Patterns generated recursively by adding edges
  - Graph structure represented using DFS codes (gSpan, 2002)
  - Different codes can describe the same graph
  - Examples on unlabeled undirected graphs, but generalizable





- Patterns generated recursively by adding edges
  - Graph structure represented using DFS codes (gSpan, 2002)
  - Different codes can describe the same graph
  - Examples on unlabeled undirected graphs, but generalizable





- Patterns generated recursively by adding edges
  - Graph structure represented using DFS codes (gSpan, 2002)
  - Different codes can describe the same graph
  - Examples on unlabeled undirected graphs, but generalizable





- Patterns generated recursively by adding edges
  - Graph structure represented using DFS codes (gSpan, 2002)
  - Different codes can describe the same graph
  - Examples on unlabeled undirected graphs, but generalizable



(1,2),(2,3)



- Patterns generated recursively by adding edges
  - Graph structure represented using DFS codes (gSpan, 2002)
  - Different codes can describe the same graph
  - Examples on unlabeled undirected graphs, but generalizable



- Patterns generated recursively by adding edges
  - Graph structure represented using DFS codes (gSpan, 2002)
  - Different codes can describe the same graph
  - Examples on unlabeled undirected graphs, but generalizable



- Patterns generated recursively by adding edges
  - Graph structure represented using DFS codes (gSpan, 2002)
  - Different codes can describe the same graph
  - Examples on unlabeled undirected graphs, but generalizable





- Patterns generated recursively by adding edges
  - Graph structure represented using DFS codes (gSpan, 2002)
  - Different codes can describe the same graph
  - Examples on unlabeled undirected graphs, but generalizable



(1,2),(2,3),(3,1),(2,4)



- Patterns generated recursively by adding edges
  - Graph structure represented using DFS codes (gSpan, 2002)
  - Different codes can describe the same graph
  - Examples on unlabeled undirected graphs, but generalizable



(1,2),(2,3),(3,1),(2,4)

- Patterns generated recursively by adding edges
  - Graph structure represented using DFS codes (gSpan, 2002)
  - Different codes can describe the same graph
  - Examples on unlabeled undirected graphs, but generalizable



(1,2),(2,3),(3,1),(2,4)



(1,2),(2,3),(3,1),(3,4)

- Patterns generated recursively by adding edges
  - Graph structure represented using DFS codes (gSpan, 2002)
  - Different codes can describe the same graph
  - Examples on unlabeled undirected graphs, but generalizable



#### **RECURSIVE GENERATION**

 Canonical child pattern of s edges obtained from 2 parents of s-1 edges

 $P_2 e_1...e_{s-2},e_{s'}$ 

1 - 2 - 31 - 2 - 34

**C**  $e_{1...e_{s-2},e_{s-1},e_{s}}$ 

#### **RECURSIVE GENERATION**

 Canonical child pattern of s edges obtained from 2 parents of s-1 edges

P<sub>2</sub> e<sub>1</sub>...e<sub>s</sub>-2,e<sub>s</sub>'

C e<sub>1</sub>...e<sub>s</sub>-2,e<sub>s</sub>-1,e<sub>s</sub>



### **GENERATION PRIMITIVES**

**e**s-1

|    |          | Backward | Forward               |  |
|----|----------|----------|-----------------------|--|
| es | Backward | BB-merge | FB-merge              |  |
|    | Forward  | BF-merge | FF-merge<br>Extension |  |

Completeness: no canonical frequent pattern is missed











#### FB-MERGE ON AUTOMATA OF EMBEDDINGS

- FB-merge: intersections of embeddings
  - Generate an automaton that accepts W<sub>P1</sub> ∩ W<sub>P2</sub>: product of automata O(#states<sup>2</sup>)





#### FB-MERGE ON AUTOMATA OF EMBEDDINGS

- FB-merge: intersections of embeddings
  - Generate an automaton that accepts W<sub>P1</sub> ∩ W<sub>P2</sub>: product of automata O(#states<sup>2</sup>)



#### AUTOMATA VALIDATION

- Support computed directly from automata
  - Mappings of vertex *i* are the labels of transitions at level *i*
  - · No duplicates rule, check that each transition has at least a valid path



### PRIMITIVES ON AUTOMATA: GENERALIZATION

- Each of the 5 primitives can be performed directly on automata
  - O(#embeddings) becomes O(#automaton states<sup>2</sup>)
  - Compact automata lead to huge gains
    - Minimization: Revuz's algorithm

SAMi is complete: all frequent patterns are generated in their canonical representation

#### EXPERIMENTS

#### SETUP

#### Datasets

- Citeseer: 3k vertices, 5k edges
- Patents: 2M vertices, 13M edges
- Yago: 2M vertices, 4M edges

#### • Parameters

- Pattern complexity (#edges)
- Support threshold (ε)
- Measures
  - Mining time
  - #embeddings / automata size

#### PERFORMANCE: CITESEER



24

#### **EMBEDDINGS COMPRESSION**



Number of vertices in pattern

#### PERFORMANCE: PATENTS



# 16k18k20k22k24k26k28kSupport Threshold ε<br/>YAGO

|                      | Max. #edges = 3 | 4       | 5       |
|----------------------|-----------------|---------|---------|
| $\varepsilon = 2$    | 0:02:47         | 1:14:57 | 3:44:11 |
| $\varepsilon = 10$   | 0:02:28         | 1:14:49 | 2:52:21 |
| $\varepsilon = 100$  | 0:02:26         | 1:14:26 | 2:35:28 |
| $\varepsilon = 1000$ | 0:02:07         | 1:11:19 | 2:13:05 |

Ontological Pathfinding [SIGMOD16] AMIE+ [VLDBJ]

Max #edges=3

#### GRAPH MINING: CONCLUSION

- Addresses the fundamental problems of FSM
  - Pattern generation process (5 primitives)
  - Compressed representation of embeddings
- Three orders of magnitude faster than state of the art
  - Opens new possibilities: knowledge graph mining
  - Qualitative evaluation of mining outcome