
Large-Scale Graph Mining

Vincent Leroy

FREQUENT SUBGRAPH
MINING (FSM)

• Graphs represent complex data

• Chemical compounds, proteins

• Social networks

• Knowledge bases (ontologies)

• Frequent Subgraph Mining

• Discover regularities in the structure of a graph

• Properties and interactions (citations graph,
organization structure)

• Privacy (social networks)

• Link prediction (recommender systems, linked
data)

10M entities, 120M facts

570M entities, 18B facts (2012)

2

FSM: CHEMISTRY

Caffeine molecule 
C8H10N4O2

3

FSM: CHEMISTRY

Caffeine molecule 
C8H10N4O2

3

FSM: KNOWLEDGE BASE

Jim Halpert

Dwight Schrute

Don Draper

Peggy Olson

Sterling
Cooper

Dunder
Mifflin Scranton

New
York

located in

lives in

lives in

lives in

located in

works at

works at

works at

works at

4

FSM: KNOWLEDGE BASE

Jim Halpert

Dwight Schrute

Don Draper

Peggy Olson

Sterling
Cooper

Dunder
Mifflin Scranton

New
York

located in

lives in

lives in

lives in

located in

works at

works at

works at

works at

4

FSM: DEFINITION

• Find all frequent (support ≥ ε) subgraphs

JH

DS

DD
PO

SC

DM S

NY

DM S

P1

SC NY

Support(P1) = 2

2
em

be
dd

in
gs

Input Graph

5

SUPPORT DEFINITION

DM S

P2

SC NY

JH

DS

DD

PO

DM

SC

S

NY4
em

be
dd

in
gsJH

DS

DD
PO

SC

DM S

NY

6

• Find all frequent (support ≥ ε) subgraphs

SUPPORT DEFINITION

DM S

P2

SC NY

JH

DS

DD

PO

DM

SC

S

NY4
em

be
dd

in
gs

Minimum Image Support: min(#mappings) 
Anti-monotony

JH

DS

DD
PO

SC

DM S

NY

6

• Find all frequent (support ≥ ε) subgraphs

SUPPORT DEFINITION

Support(P2) = 2

DM S

P2

SC NY

JH

DS

DD

PO

DM

SC

S

NY4
em

be
dd

in
gs

Minimum Image Support: min(#mappings) 
Anti-monotony

JH

DS

DD
PO

SC

DM S

NY

6

• Find all frequent (support ≥ ε) subgraphs

CHALLENGE
• Computing the support requires keeping track of embeddings

Input graph

A
E

D C

B
X

P

7

Pattern identified

CHALLENGE
• Computing the support requires keeping track of embeddings

Input graph

A
E

D C

B
X

P

• Up to factorial(V) embeddings for a single pattern due to symmetry 
(ex: 10! > 3M)

• Mining larger patterns and dealing with high-degree vertices is
costly

7

Pattern identified

CHALLENGE
• Computing the support requires keeping track of embeddings

Input graph

A
E

D C

B
X

P

…
60

 e
m

be
dd

in
gs A

A
A
A
A

B
B
B
C
C

X
X
X
X
X

C
D
E
B
D

• Up to factorial(V) embeddings for a single pattern due to symmetry 
(ex: 10! > 3M)

• Mining larger patterns and dealing with high-degree vertices is
costly

7

Pattern identified

STATE OF THE ART

• Arabesque [SOSP 2015] 
Use more resources: parallel and distributed
computation

• ScaleMine [SC 2016]  
Simplify the problem: compute a minimal set of
embeddings to reach the support threshold ε
• Lose accurate information on support which

is important for many applications

8

CONTRIBUTIONS

• Address the core algorithmic and data structure
problem of FSM with a new algorithm: SAMi

• Define 5 primitive operations to recursively
enumerate patterns

• Propose a compressed representation of
embeddings that circumvents the cost of
enumerating embeddings

9

OVERVIEW OF SAMi

Patterns sharing
s-1 edges

Patterns of
1 edgeInit. 5 Primitives

Parent patterns 
(P1,P2)

Child pattern
C of s edges

Canonicality
test

Support
test

10

EMBEDDINGS
REPRESENTATION

11

INTUITION
P

…

G

There must be a more compact way to express this

A
E

D C

B

A
A
A
A
B

B
C
D
E
A

X
X
X
X
X

X

12

INTUITION
P

…

G

There must be a more compact way to express this

A
E

D C

B

A
A
A
A
B

B
C
D
E
A

X
X
X
X
X

One of Then one ofThen

*No duplicates

A
B
C
D
E

A
B
C
D
E

X

X

12

AUTOMATON REPRESENTATION
OF EMBEDDINGS

s q1

A

B
C

D

E

q2 f

A

B
C

D

E

X

*No duplicates

• Deterministic finite automaton

• Alphabet: all vertex identifiers from the input graph

• Words accepted: embeddings of the pattern*

13

AUTOMATON REPRESENTATION
OF EMBEDDINGS

s q1

A

B
C

D

E

q2 f

A

B
C

D

E

X

*No duplicates

• Deterministic finite automaton

• Alphabet: all vertex identifiers from the input graph

• Words accepted: embeddings of the pattern*

We save memory, can we do more?
13

PATTERN GENERATION

14

PATTERN REPRESENTATION
• Patterns generated recursively by adding edges

• Graph structure represented using DFS codes (gSpan, 2002)
• Different codes can describe the same graph
• Examples on unlabeled undirected graphs, but generalizable

15

PATTERN REPRESENTATION
• Patterns generated recursively by adding edges

• Graph structure represented using DFS codes (gSpan, 2002)
• Different codes can describe the same graph
• Examples on unlabeled undirected graphs, but generalizable

1

15

PATTERN REPRESENTATION
• Patterns generated recursively by adding edges

• Graph structure represented using DFS codes (gSpan, 2002)
• Different codes can describe the same graph
• Examples on unlabeled undirected graphs, but generalizable

2

1

15

PATTERN REPRESENTATION
• Patterns generated recursively by adding edges

• Graph structure represented using DFS codes (gSpan, 2002)
• Different codes can describe the same graph
• Examples on unlabeled undirected graphs, but generalizable

2

1

(1,2)
15

PATTERN REPRESENTATION
• Patterns generated recursively by adding edges

• Graph structure represented using DFS codes (gSpan, 2002)
• Different codes can describe the same graph
• Examples on unlabeled undirected graphs, but generalizable

3

2

1

(1,2)
15

PATTERN REPRESENTATION
• Patterns generated recursively by adding edges

• Graph structure represented using DFS codes (gSpan, 2002)
• Different codes can describe the same graph
• Examples on unlabeled undirected graphs, but generalizable

3

2

1

(1,2) ,(2,3)
15

Forward edge
Backward edge

PATTERN REPRESENTATION
• Patterns generated recursively by adding edges

• Graph structure represented using DFS codes (gSpan, 2002)
• Different codes can describe the same graph
• Examples on unlabeled undirected graphs, but generalizable

3

2

1

(1,2) ,(2,3)
15

Forward edge
Backward edge

PATTERN REPRESENTATION
• Patterns generated recursively by adding edges

• Graph structure represented using DFS codes (gSpan, 2002)
• Different codes can describe the same graph
• Examples on unlabeled undirected graphs, but generalizable

3

2

1

(1,2) ,(2,3) ,(3,1)
15

Forward edge
Backward edge

PATTERN REPRESENTATION
• Patterns generated recursively by adding edges

• Graph structure represented using DFS codes (gSpan, 2002)
• Different codes can describe the same graph
• Examples on unlabeled undirected graphs, but generalizable

3 4

2

1

(1,2) ,(2,3) ,(3,1)
15

Forward edge
Backward edge

PATTERN REPRESENTATION
• Patterns generated recursively by adding edges

• Graph structure represented using DFS codes (gSpan, 2002)
• Different codes can describe the same graph
• Examples on unlabeled undirected graphs, but generalizable

3 4

2

1

(1,2) ,(2,3) ,(3,1) ,(2,4)
15

Forward edge
Backward edge

PATTERN REPRESENTATION
• Patterns generated recursively by adding edges

• Graph structure represented using DFS codes (gSpan, 2002)
• Different codes can describe the same graph
• Examples on unlabeled undirected graphs, but generalizable

3 4

2

1

(1,2) ,(2,3) ,(3,1) ,(2,4)
15

Forward edge
Backward edge

PATTERN REPRESENTATION
• Patterns generated recursively by adding edges

• Graph structure represented using DFS codes (gSpan, 2002)
• Different codes can describe the same graph
• Examples on unlabeled undirected graphs, but generalizable

3 4

2

1

(1,2) ,(2,3) ,(3,1) ,(2,4)

1

4

2

3

(1,2),(2,3),(3,1),(3,4)  
15

Forward edge
Backward edge

PATTERN REPRESENTATION
• Patterns generated recursively by adding edges

• Graph structure represented using DFS codes (gSpan, 2002)
• Different codes can describe the same graph
• Examples on unlabeled undirected graphs, but generalizable

3 4 Canonical 
Representation

2

1

(1,2) ,(2,3) ,(3,1) ,(2,4)

1

4

2

3

(1,2),(2,3),(3,1),(3,4)  
15

RECURSIVE GENERATION
• Canonical child pattern of s edges obtained

from 2 parents of s-1 edges

P1 e1…es−2,es−1

P2 e1…es−2,es'

C e1…es−2,es−1,es

1

1

4

2

2

3

3

16

RECURSIVE GENERATION
• Canonical child pattern of s edges obtained

from 2 parents of s-1 edges

P1 e1…es−2,es−1

P2 e1…es−2,es'

C e1…es−2,es−1,es

1

1

4

2

2

1

4

2 3

3

3

16

GENERATION PRIMITIVES

Backward Forward

Backward BB-merge FB-merge

Forward BF-merge FF-merge  
Extension

Completeness: no canonical frequent pattern is missed

es-1

es

17

FB-MERGE

P2 (1,2),(1,3)

P1 (1,2),(2,3)2

1

3

2

1

3

18

FB-MERGE

P2 (1,2),(1,3)

P1 (1,2),(2,3)2

1

3

2

1

3

C (1,2),(2,3),(3,1)2

1

3

18

FB-MERGE

P2 (1,2),(1,3)

P1 (1,2),(2,3) es= swap(es’)2

1

3

2

1

3

C (1,2),(2,3),(3,1)2

1

3

18

FB-MERGE

P2 (1,2),(1,3)

P1 (1,2),(2,3) es= swap(es’)2

1

3

2

1

3

C (1,2),(2,3),(3,1)2

1

3

(v1,v2,v3) embedding of P1 and P2

(v1,v2,v3) embedding of C

18

FB-MERGE

P2 (1,2),(1,3)

P1 (1,2),(2,3) es= swap(es’)2

1

3

2

1

3

C (1,2),(2,3),(3,1)2

1

3

(v1,v2,v3) embedding of P1 and P2

(v1,v2,v3) embedding of C

Intersection of embeddings

18

FB-MERGE ON AUTOMATA
OF EMBEDDINGS

s q1

A

B
f

B

C

• FB-merge: intersections of embeddings

• Generate an automaton that accepts WP1 ∩ WP2:  
product of automata O(#states2)

s

q2
A

B
f

B

B

q3
D

D

C

P2

P1

19

FB-MERGE ON AUTOMATA
OF EMBEDDINGS

s q1

A

B
f

B

C

• FB-merge: intersections of embeddings

• Generate an automaton that accepts WP1 ∩ WP2:  
product of automata O(#states2)

s

q2
A

B
f

B

B

q3
D

D

C

P2

P1

s

q1,2
A

B
f

B

B

q1,3
C

C

19

AUTOMATA VALIDATION
• Support computed directly from automata

• Mappings of vertex i are the labels of transitions at level i

• No duplicates rule, check that each transition has at least a valid path

s

q1,2
A

B
f

C

B

q1,3
20

PRIMITIVES ON AUTOMATA:
GENERALIZATION

• Each of the 5 primitives can be performed
directly on automata

• O(#embeddings) becomes O(#automaton states2)

• Compact automata lead to huge gains

• Minimization: Revuz’s algorithm

21

SAMi is complete: all frequent patterns are
generated in their canonical representation

EXPERIMENTS

22

SETUP
• Datasets

• Citeseer: 3k vertices, 5k edges

• Patents: 2M vertices, 13M edges

• Yago: 2M vertices, 4M edges

• Parameters

• Pattern complexity (#edges)

• Support threshold (ε)

• Measures

• Mining time

• #embeddings / automata size

23

PERFORMANCE: CITESEER

24

100

101

102

103

104

3 4 5 6 7 8 9 10

T
im

e
 [

se
c]

Maximum number of edges

SAMi
ScaleMine
Arabesque

EMBEDDINGS COMPRESSION

102
103
104
105
106
107
108
109

1010

 2 3 4 5 6 7 8

C
o

u
n

t

Number of vertices

embeddings
transitions

states

25

Number of vertices in pattern

#e
m

be
dd

in
gs

/tr
an

si
tio

ns
/s

ta
te

s

PERFORMANCE: PATENTS

5h

26

101

102

103

104

105

16k 18k 20k 22k 24k 26k 28k

T
im

e
 [
se

c]

Support Threshold ε

SAMi
ScaleMine
Arabesque

PERFORMANCE: YAGO

27

SIGMOD’18, June 2018, Houston, Texas USA double blind review

101

102

103

104

105

16k 18k 20k 22k 24k 26k 28k
T

im
e

 [
se

c]

Support Threshold ε

SAMi
ScaleMine
Arabesque

Figure 10: Mining time for Patents

Max. #edges = 3 4 5
� = 2 0:02:47 1:14:57 3:44:11
� = 10 0:02:28 1:14:49 2:52:21
� = 100 0:02:26 1:14:26 2:35:28
� = 1000 0:02:07 1:11:19 2:13:05
Table 2: Mining time for Yago2s (H:MM:SS)

of vertices increases by 1, the number of embeddings increases by
a factor of 12 to 15. This is consistent with the increase in execu-
tion time of Arabesque reported in Figure 8. The execution cost of
SAMi however depends on the size of automata, which increases at
a much lower rate (between 2 and 3). This is also consistent with
SAMi’s execution times on this dataset. This experiment show that
SAMi’s automaton-based representation of embeddings achieves its
goal in preserving a concise data structure throughout the recursive
pattern generation process.

Varying the support threshold. In Figure 10, we switch to the
Patents dataset and vary the support threshold, without setting
a limitation on the number of edges in patterns. Arabesque and
ScaleMine have similar performance for �=28k. This is because, for
that threshold, frequent patterns contain at most 3 vertices. How-
ever, at �=24k, patterns with 4 vertices are found, and Arabesque’s
execution time increases by a factor of 20. At �=15k, patterns con-
tain up to 11 vertices. Nonetheless, the combinatorial explosion
in number of embeddings does not a�ect SAMi, as the compressed
representation avoids their enumeration. SAMi is even between 5
(�=24k) and 22 (�=15k) times faster than ScaleMine on this exper-
iment, despite the fact that it has the additional requirement of
computing exact supports. With higher support thresholds and a
larger graph, ScaleMine has to �nd more embeddings than in the
case of Citeseer, which increases its execution time. Comparatively,
SAMi’s primitives on automata are more e�cient.

6.4 Detailed evaluation of SAMi
We now focus on SAMi, and evaluate its performance on a speci�c
type of data: knowledge graphs. Then, we detail the execution
of SAMi to better understand the usage of primitives. Finally, we
evaluate the scalability of SAMi in the cluster con�guration.

Performance on knowledge graphs. Knowledge graphs, such as
Yago, are particularly challenging because they contain star-shaped
subgraphs. AMIE+ [14] and OP [7] specialize in �nding graph-based

102

103

104

105

4 5 6 7 8

T
im

e
 [

se
c]

Maximum number of edges

ε=2
ε=10

ε=100
ε=1000

Figure 11: Mining time for Yago2Core

association rules in these datasets. They include speci�c optimiza-
tions to avoid computing patterns that are unlikely to lead to inter-
esting rules. However, they su�er from the same scalability issue
as Arabesque, since they enumerate all embeddings. In practice,
OP [7] produces rules of 3 vertices, and AMIE+ [14] produces rules
of 3 vertices on Yago2s and 4 on Yago2Core. Table 2 and Figure 11
indicate the running times of SAMi for these datasets. In the case of
Yago2s, SAMi �nds all patterns of size 3 in less than 3 minutes, even
with extremely low support thresholds (�=2, giving 7,772 patterns).
For patterns of size 5, SAMi takes up to 3 hours 45 minutes, which is
still reasonable. This generates over a million patterns at the lowest
support threshold. While it is unlikely that an analyst would be
interested in the full list of results, these patterns can be further
re�ned into association rules, and �ltered based on their accuracy.
For Yago2Core, SAMi reaches from 6 to 8 edges depending on the
support threshold. Overall, this experiment shows that SAMi can
accelerate association rules mining algorithms, with the potential
to �nd more accurate association rules than existing approaches
by including more edges in patterns.

Execution analysis. We analyze the execution of SAMi on Patents
and Yago2Core, and present the number of invocations of each prim-
itive in Tables 3 and 4. In both cases, EE-merge and EE-extension
are frequently used, while EI-merge is frequent for Yago2Core but
not for Patents. As explained in Section 3.2, SAMi sometimes com-
putes the embeddings corresponding to some non-canonical codes
ending with an external edge. This is overhead, as SAMi also com-
putes the embeddings corresponding to the canonical version of
the same pattern. However, this computation only takes place if the
embeddings are actually used to reach a canonical result. The direct
column reports the number of invocation of a primitive to compute
the support of a pattern represented by its canonical code. The lazy
column indicates how many non-canonical DFS codes are consid-
ered throughout the enumeration, and the lazy computed column
indicates how many times the embeddings of a non canonical code
are actually computed. The analysis of the execution clearly shows
that, in practice, this is very rare, so the overhead is extremely
limited. In the case of Patents, the support of 7,333 canonical pat-
terns is computed, out of which 1,166 are frequent (16%). This is
because SAMi has to reach non frequent patterns to stop the recur-
sion using the anti-monotony property of MI support. In the case
of Yago2Core, this ratio is higher, at 47%, because the recursion also
stops on a frequent pattern when reaching 5 edges. Overall, SAMi

Ontological Pathfinding [SIGMOD16]
AMIE+ [VLDBJ] Max #edges=3

GRAPH MINING:
CONCLUSION

• Addresses the fundamental problems of FSM

• Pattern generation process (5 primitives)

• Compressed representation of embeddings

• Three orders of magnitude faster than state of the art

• Opens new possibilities: knowledge graph mining

• Qualitative evaluation of mining outcome
28

