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FREQUENT SUBGRAPH
MINING (FSM)

- Graphs represent complex data *

- Chemical compounds, proteins ya G D
S

. elect knowledge
- Social networks

10M entities, 120M facts

- Knowledge bases (ontologies)

- Frequent Subgraph Mining

- Discover regularities in the structure of a graph ) o * e q
- -
- Properties and interactions (citations graph, - . c
organization structure) o e
* Privacy (social networks) 570M entities, 18B facts (2012)

» Link prediction (recommender systems, linked
data)
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FSM: DEFINITION

- Find all frequent (support =2 €) subgraphs
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CHALLENGE

- Computing the support requires keeping track of embeddings
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 Up to factorial(VV) embeddings for a single pattern due to symmetry
(ex: 10! > 3M)

- Mining larger patterns and dealing with high-degree vertices is
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CHALLENGE

- Computing the support requires keeping track of embeddings
 Up to factorial(VV) embeddings for a single pattern due to symmetry

(ex: 10! > 3M)
- Mining larger patterns and dealing with high-degree vertices is
costly
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STATE OF THE ART

» Arabesque [SOSP 20195]
Use more resources: parallel and distributed

computation

» ScaleMine [SC 2016]
Simplify the problem: compute a minimal set of
embeddings to reach the support threshold ¢

» Lose accurate information on support which
IS Important for many applications



CONTRIBUTIONS

» Address the core algorithmic and data structure
problem of FSM with a new algorithm: SAMi

» Define 5 primitive operations to recursively
enumerate patterns

» Propose a compressed representation of
embeddings that circumvents the cost of
enumerating embeddings



OVERVIEW OF SAMi

Parent patterns

W Patterns of Patterns sharing LS 5 Primitives
Init. 1 edge s-1 edges

Child pattern
C of s edges

Canonicality
test

Support J
test
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EMBEDDINGS
REPRESENTATION



INTUITION

There must be a more compact way to express this
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INTUITION

There must be a more compact way to express this

B B
One of Then Then one of
D D

*No duplicates
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AUTOMATON REPRESENTATION
OF EMBEDDINGS

« Deterministic finite automaton
 Alphabet: all vertex identifiers from the input graph

» Words accepted: embeddings of the pattern®

A
) 00 X
N

*No duplicates
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AUTOMATON REPRESENTATION

OF EMBEDDINGS

« Deterministic finite automaton
 Alphabet: all vertex identifiers from the input graph

- Words accepted: embeddings of the pattern®

A A
X qzﬁf
N

*No duplicates
We save memory, can we do more?

m (O [O |
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PATTERN GENERATION



PATTERN REPRESENTATION

- Patterns generated recursively by adding edges
 Graph structure represented using DFS codes (gSpan, 2002)
- Different codes can describe the same graph

- Examples on unlabeled undirected graphs, but generalizable
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PATTERN REPRESENTATION

- Patterns generated recursively by adding edges
 Graph structure represented using DFS codes (gSpan, 2002)
- Different codes can describe the same graph

- Examples on unlabeled undirected graphs, but generalizable
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PATTERN REPRESENTATION

- Patterns generated recursively by adding edges

 Graph structure represented using DFS codes (gSpan, 2002)

- Different codes can describe the same graph

- Examples on unlabeled undirected graphs, but generalizable

Backward edge
1 Forward edge

(1,2),(2,3),(3,1),(2,4)

4 e,

Canonical H

Representation

K (1,2),(2,3),(3,1),(3,4) jﬁ




RECURSIVE GENERATION

 Canonical child pattern of s edges obtained
from 2 parents of s-7 edges

P1 e1...€s-2,65-1

P> eq...€es-2,6¢

C €1...65-2,65-1,Es
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GENERATION PRIMITIVES

Ss-1

EEl(o M BB-merge FB-merge

Sl BF-merge = TR
Extension

Completeness: no canonical frequent pattern is missed
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FB-MERGE

(1,2),(2,3)

(1,2),(1,3)



FB-MERGE
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FB-MERGE

es= swap(es’)
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FB-MERGE

(1,2),(2,3) Cs= Swap(es,)

(v1,v2,v3) embedding of P1 and P>

# (v1,v2,v3) embedding of C

(1,2),(1,3)

(1,2),(2,3),(3,1)

18



FB-MERGE

(1,2),(2,3)

(1,2),(1,3)

(1,2),(2,3),(3,1)

es= swap(es’)

(v1,v2,v3) embedding of P1 and P2

# (v1,v2,v3) embedding of C

Intersection of embeddings
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FB-MERGE ON AUTOMATA
OF EMBEDDINGS

- FB-merge: intersections of embeddings

* Generate an automaton that accepts We;, f We.:

product of automata O(#states?)
A B

P4
(B;q )

C
B
A D
P> . .
2 Y
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FB-MERGE ON AUTOMATA
OF EMBEDDINGS

- FB-merge: intersections of embeddings

* Generate an automaton that accepts We;, f We.:
product of automata O(#states?)




AUTOMATA VALIDATION

« Support computed directly from automata
- Mappings of vertex i/ are the labels of transitions at level j

- No duplicates rule, check that each transition has at least a valid path
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PRIMITIVES ON AUTOMATA:
GENERALIZATION

- Each of the 5 primitives can be performed
directly on automata

. Off

tembeddings) becomes O(?

fautomaton states?)

- Compact automata lead to huge gains

» Minimization: Revuz's algorithm

SAMi is complete: all frequent patterns are
generated in their canonical representation

21



EXPERIMENTS



SETUP

- Datasets

- Citeseer: 3k vertices, 5k edges
- Patents: 2M vertices, 13M edges

- Yago: 2M vertices, 4M edges

- Parameters

- Pattern complexity (#edges)

-« Support threshold (¢)

- Measures

« Mining time

- #embeddings / automata size
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PERFORMANCE: CITESEER
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EMBEDDINGS COMPRESSION

10 | - e g . _n S i S R SRR ST 8 .
107" = embeddings | | | i [
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#embeddings/transitions/states

25



PERFORMANCE: PATENTS

Time [sec]
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PERFORMANCE: YAGO

Max. #edges = 3 4 5
& = 0:02:47 1:14:57 | 3:44:11
=10 0:02:28 1:14:49 | 2:52:21
¢ =100 0:02:26 1:14:26 | 2:35:28
¢ = 1000 0:02:07 1:11:19 | 2:13:05

Ontological Pathfinding [SIGMOD | 6

AMIE+ [VLDBJ

Max #edges=3
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GRAPH MINING:
CONCLUSION

- Addresses the fundamental problems of FSM

+ Pattern generation process (5 primitives)

« Compressed representation of embeddings

- Three orders of magnitude faster than state of the art
- Opens new possibilities: knowledge graph mining

- Qualitative evaluation of mining outcome
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