Dense Neighborhood Pattern Sampling in Numerical Data

Arnaud Giacometti and Arnaud Soulet

University of Tours, France

Neighborhood pattern sampling problem

Three-step random procedure

Experimental study on UCI benchmarks

Finding interesting patterns in all subspaces

(pattern = an anomalously high local density of data points [Hand, 2002])

X

y

Discretized patterns

Subspace patterns

Interval patterns

loss of information

loss of information + combinatorial explosion

loss of information + combinatorial explosion + curse of dimensionality

Neighborhood patterns (for contrast mining) [Konijn et al., PAKDD13]

Limit of neighborhood patterns [Konijn et al., PAKDD13]

Challenge of neighborhood patterns = infinite search space

Neighborhood pattern sampling problem

Return a random neighborhood pattern with a probability proportional to its number of neighbors (given a radius)

Neighborhood pattern sampling problem

Return a random neighborhood pattern with a probability proportional to its number of neighbors density (given a radius)

Normalizing by the volume for dealing with different subspaces

Neighborhood pattern sampling problem

Return a random neighborhood pattern with a probability proportional to its number of neighbors density (given a radius)

Normalizing by the volume for dealing with different **p-norms**

Methods for pattern sampling

Stochastic procedure

- □ Output Space Sampling for Graph Patterns [Hasan et Zaki, VLDB09]
- Fast Query Execution for Retrieval Models Based on Path-Constrained Random Walks [Lao et Cohen, KDD10]

Two-step random procedure

- Direct local pattern sampling by efficient two-step random procedures [Boley et al., KDD11]
- Instant Exceptional Model Mining Using Weighted Controlled Pattern Sampling [Moens et Boley, IDA14]

SAT procedure

□ Flexible constrained sampling with guarantees for pattern mining [Dzyuba et al., DAMI17]

Two-step random procedure [Boley et al., KDD11]

Frequent itemset sampling: return a random itemset with a probability proportional to its frequency

(AB has twice more chance to be drawn than AC.)

Two-step random procedure [Boley et al., KDD11]

O Calculate the number of itemsets per transaction

Two-step random procedure [Boley et al., KDD11]

① Draw a transaction $t \in D$ with a probability proportional to the number of itemsets contained in t

① Draw a transaction $t \in D$ with a probability proportional to the number of itemsets contained in t

2 Draw uniformly an itemset from *t*

Three-step random procedure (1)

Three-step random procedure (2)

Three-step random procedure (3)

01/06/2018

Contributions of three-step random procedure

Exact sampling method of neighborhood patterns with a probability proportional to its density (given a radius and a p-norm)

Generalization of the two-step random procedure (mixed data)

Third step is not costly:

- I-norm: O(log(#data points) + #dimensions x log(#dimensions))
- 2-norm and ∞-norm: O(log(#data points) + #dimensions)
- In practice, average time per pattern: 70 ms

Experimental study on UCI benchmarks

Protocol

 \Box Z-score for numerical data \Box Radius = 1

Questions

- 1. What is the proportion of patterns that we do not observe in a randomized dataset? (= plausibility)
- 2. What is the proportion of distinct patterns? (= diversity)
- 3. What is the accuracy of a sample-based associative classifier?

1. Plausibility of sampled patterns

QCM-BioChem - Paris

Plausibility = proportion of patterns that we do not observe in a randomized dataset

01/06/2018

2. Diversity of sampled patterns

Diversity = proportion of distinct patterns

- Diversity enhancement thanks to the third step
- Diversity as good as interval pattern mining

3. Sampling-based associative classification

CBA-like method with a sample of 10k patterns

- Accuracy as good as classic methods with a complete extraction
- Sampling-based classifier built in seconds

Conclusion

Description of the second s

- Instant discovery of patterns despite an infinite search space
- High quality patterns
- Lossless pattern mining

□ Next steps:

- Interactive pattern mining
- Instant subspace clustering

Thank you!

