FS³: Méthode d'échantillonnage pour les K-plus fréquents sous-graphes

Stagiaire:

Khalil Youcef LAGRAA

Tuteur:

Albrecht **ZIMMERMANN**

Auteur:

Tanay Kumar Saha and Mohammad Al Hasan

Sommaire

- 1. FS³ (Fixed Size Subgraph Sampler).
- 2. Processus.
- 3. Approche.
 - a. Transitions d'états.
 - b. Fonction de score.
- 4. L'algorithme d'échantillonnage.
- 5. Manageur de chaîne.
- 6. L'algorithme de FS³
- 7. Conclusion.

FS: Fixed Size Subgraph Sampler

- Une méthode d'échantillonnage qui extrait une petite partie des sous-graphes qui sont **les plus fréquents**.
- Elle applique l'échantillonnage sur un espace de sous graphes avec une taille fix prédéfinie.
- Elle est basée sur les **chaînes de markov monte carlo**.
- Utilise un manageur de chaîne qui stock les K-plus fréquents graphes.

Processus

Le processus se compose de 2 étapes :

$$G_i \in \mathcal{G}, \forall i = \{1 \dots n\}$$
 et la taille P.

- La première étape consiste à choisir un des graphes uniformément.
- Et La deuxième étape consiste à choisir les sous-graphes de taille P, en utilisant les chaîne de markov monte carlo, cette étape s'exécute en plusieurs itérations et utilise un manageur de chaîne qui gère les K premiers ou plus haut position dans la chaîne.

Approche

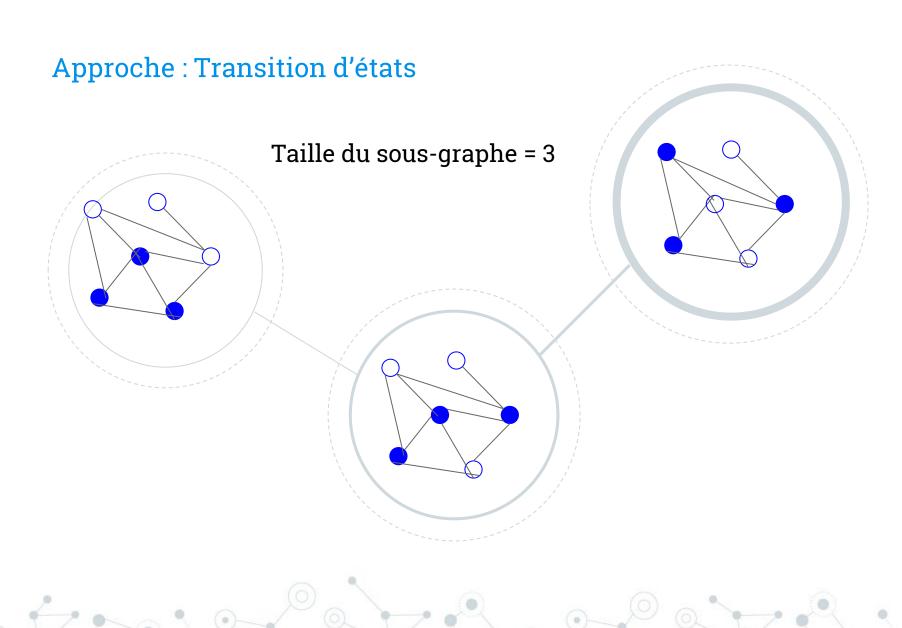
- Dans une session d'échantillonnage, le nombre de graphes en entrée qui ont concluent le graphe g comme résultat d'échantillonnage est appelé support_a(g). et donc on à support(g) est la valeur maximale de support_a(g).
- Pour dire qu'un graphe est fréquent si la valeur de son **extended-support est** plus grande que les graphes de la même taille.
- On appelle un un sous-graphe g Fréquent si une copie identique est échantillonnée depuis plusieurs graphes donnés en entrée dans les différentes itérations de l'échantillonnage.

Approche: Transition d'états

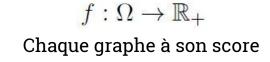
L'espace d'échantillonnage de la marche de MCMC est l'ensemble de tous les P-sous graphes dans une base de graphe Gi.

Pour chaque temps:

- 1. la marche aléatoire visite un des **p-sous graphes de Gi**.
- 2. Puis il localise tous **ses voisins** qui sont aussi des p-sous graphe.
- 3. choisit avec une **probabilité uniforme** le prochain voisin qui deviendra **le nouvel état de la chaîne en utilisant l'algorithme de MH**.



Approche: Fonction de score



$$s_1(g) = \frac{1}{|E(g)|} \sum_{e \in E(g)} support(e)$$
 $s_2(g) = \left| \bigcap_{e \in E(g)} support(e) \right|$

La moyenne du support des arcs qui constitue le graphe q La cardinalité générée par l'intersection s=du support de l'ensemble de chaque arc de g

plus le support est grand, plus le score est grand.

L'algorithme d'échantillonnage

SAMPLEINDSUBGRAPH (G_i, p)

```
1 x = \text{State saved at } G_i

2 d_x = \text{Neighbor-count of } x

3 a\_sup_x = \text{score of graph } x

4 while (a neighbor state y is not found)

5 y = \text{a random neighbor of } x

6 d_y = \text{Possible neighbor of } y

7 a\_sup_y = \text{score of graph } y

8 accp\_val = (d_x * a\_sup_y)/(d_y * a\_sup_x)

9 accp\_probablility = min(1, accp\_val)

10 if uniform(0, 1) \leq accp\_probability

11 return y
```

Entrée : le graphe et la taille p des sous-graphes

- Dans la ligne 1 on obtient un p-sous graphe et donc l'état de la chaîne de markov
- Dans la ligne 2 on compte le nombre de voisins de ce graphe c'est à dire les graphes adjacents
- Ligne 3 on calcule le score de la fonction s1 ou s2 du graphe

L'algorithme d'échantillonnage

```
SAMPLEINDSUBGRAPH(G_i, p)

1  x = \text{State saved at } G_i

2  d_x = \text{Neighbor-count of } x

3  a\_sup_x = \text{score of graph } x

4  while (a neighbor state y is not found)

5  y = \text{a random neighbor of } x

6  d_y = \text{Possible neighbor of } y

7  a\_sup_y = \text{score of graph } y

8  accp\_val = (d_x * a\_sup_y)/(d_y * a\_sup_x)

9  accp\_probablility = min(1, accp\_val)

10  if uniform(0, 1) \leq accp\_probability

11  return y
```

- Par la suite on choisis un voisin y uniformément.
- On compte le nombre de voisins de y.
- On calcule le score de fonction de y.
- On calcule la probabilité d'acceptation de transition de x à y
- L'algorithme décide si il transite de l'état x à l'état y.

Manageur de chaîne

- FS stocke les meilleurs graphes dans une chaîne de taille K
- La chaîne utilisée implémente la notion de priorité.

Graphe	Label	Expected-support ou support list	Score (s1 ou s2)	temps(la dernière itération)
--------	-------	--	---------------------	----------------------------------

```
FS^3(\mathcal{G}, p, mIter)
     G: Graph Database, p: Size of the subgraph
     mIter: Number of samples
    iter = 0, Q = \emptyset
     while iter \le mIter
         iter = iter + 1
 3
         Select a graph G \in \mathcal{G} uniformly
 5
         h = SAMPLEINDSUBGRAPH(G, p)
         if Q.full = true and
 6
                    h.score() < Q.lowerHalfAvgScore()
              continue
 8
         h.code = GENCANCODE(h)
 9
         if h \in Q
10
              prevSupport = h.idset.size()
              h.idset = h.idset \cup G.id
11
              if h.idset.size() > prevSupport
12
                  h.insertTime = iter
13
14
         else
15
              if Q.full = true
                  Q.evictLast()
16
17
              h.idset = \{G.id\}
              h.insertTime = iter
18
19
              Q = Q \cup \{h\}
20
    return Q
```

Pour chaque itération on sélectionne le graphe et le sous-graphe échantillonné par l'algorithme précédent.

```
FS^3(\mathcal{G}, p, mIter)
     G: Graph Database, p: Size of the subgraph
     mIter: Number of samples
    iter = 0, Q = \emptyset
     while iter \le mIter
                                                                 Si le score du graphe n'est pas
         iter = iter + 1
 3
         Select a graph G \in \mathcal{G} uniformly
                                                                 assez grand alors on ne génère pas
 5
         h = SAMPLEINDSUBGRAPH(G, p)
                                                                 le code canonique qui est trop
 6
         if Q.full = true and
                                                                 coûteux
                   h.score() < Q.lowerHalfAvgScore()
             continue
 8
         h.code = GENCANCODE(h)
 9
         if h \in Q
10
             prevSupport = h.idset.size()
             h.idset = h.idset \cup G.id
11
             if h.idset.size() > prevSupport
12
                  h.insertTime = iter
13
14
         else
             if Q.full = true
15
                  Q.evictLast()
16
17
             h.idset = \{G.id\}
             h.insertTime = iter
18
19
             Q = Q \cup \{h\}
```

20

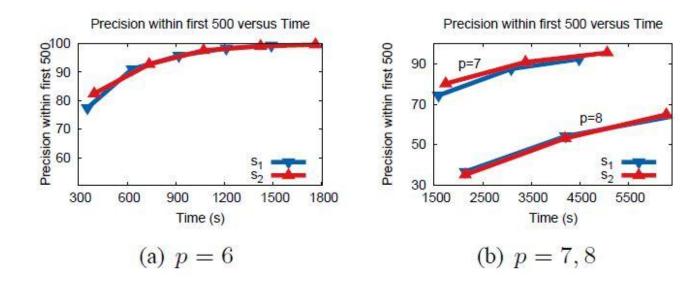
return Q

```
FS^3(\mathcal{G}, p, mIter)
     G: Graph Database, p: Size of the subgraph
     mIter: Number of samples
    iter = 0, Q = \emptyset
     while iter \le mIter
         iter = iter + 1
 3
         Select a graph G \in \mathcal{G} uniformly
 5
         h = SAMPLEINDSUBGRAPH(G, p)
 6
         if Q.full = true and
                   h.score() < Q.lowerHalfAvgScore()
             continue
 8
         h.code = GENCANCODE(h)
 9
         if h \in Q
                                                                 Sinon on génère le code canonique,
10
             prevSupport = h.idset.size()
             h.idset = h.idset \cup G.id
11
                                                                 si le graphe est déjà dans la chaîne
             if h.idset.size() > prevSupport
12
                                                                 alors on met à jour ses
                  h.insertTime = iter
13
                                                                 informations
14
         else
             if Q.full = true
15
                  Q.evictLast()
16
             h.idset = \{G.id\}
             h.insertTime = iter
18
19
             Q = Q \cup \{h\}
20
    return Q
```

```
FS^3(\mathcal{G}, p, mIter)
     G: Graph Database, p: Size of the subgraph
     mIter: Number of samples
    iter = 0, Q = \emptyset
     while iter \leq mIter
         iter = iter + 1
 3
         Select a graph G \in \mathcal{G} uniformly
 5
         h = SAMPLEINDSUBGRAPH(G, p)
 6
         if Q.full = true and
                    h.score() < Q.lowerHalfAvgScore()
              continue
 8
         h.code = GENCANCODE(h)
 9
         if h \in Q
10
              prevSupport = h.idset.size()
              h.idset = h.idset \cup G.id
11
              if h.idset.size() > prevSupport
12
                  h.insertTime = iter
13
14
         else
              if Q.full = true
15
                  Q.evictLast()
16
              h.idset = \{G.id\}
              h.insertTime = iter
18
19
              Q = Q \cup \{h\}
20
    return Q
```

Si le graphe n'est pas dans la chaîne alors on retire le dernier et on insère ce nouveau graphe et on met à jour ses informations

Expérimentation



PS Dataset: 90 graphes | 67 Noeuds | 268 Arcs

Résultat :

Pour 20 min d'exécution avec une taille de 6 nous avons : 99% de résultat.

Pour 1.4 heure avec une taille de 7 nous avons : 95 %. Pour 1.8 heure avec une taille de 8 nous avons : 65%.

Conclusion

- FS³ est une méthode d'échantillonnage qui permet d'extraire les graphes fréquents d'une taille donnée.
- Pour les données de grandes tailles, les autres algorithmes sont grandement limités alors que FS peut retourner un ensemble de graphes fréquents avec un temps acceptable.

Merci pour votre écoute!

Any questions?

