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1 EXTENSIVE EVALUATION ON A
BIGGER DATA SET

In this document we present description and results of addi-
tional experiments performed to test different aspects of our
approach described in detail in "Link prediction via commu-
nity detection in bipartite multi-layer graphs" paper. They
include general performance and scalability on a bigger data
set, and verification of predicted interactions with a confi-
dence score.

1.1 Performance on the IUPHAR
The five benchmark data sets on which we have reported
to far are relatively small and dense, as shown in Table 1
in the main article. In this section, we therefore contrast
those results with those on the IUPHAR data set, having
6 layers. We have taken that data set from [3], where it
is also described in detail. Note, that negative edges were
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not removed from IUPHAR imitating benchmark data sets
structure. Instead, edge labels were ignored for measures
computation step, what allowed us to make a comparison
of the results with our former approach in [3]. The data set
basic properties are also presented in Table 1 in the main
part, which shows that IUPHAR is significantly larger.
Given that we have shown above that fixing parameter

values internally gives effectively the same results as report-
ing the best result on the testing data, we did the latter for
IUPHAR to save time. The results are shown in Table 4. In
addition to averaged AUC, AUPR we also report standard
deviation values when it is applicable. IUPHAR is too large
to search the parameter space form starting fromm = 1with
step size 1 – instead we used step size 10 for the grid search
and searched in a more fine-grained manner once we had
found a maximum in this way. As Table 4 shows, using ei-
ther spectral partitioning or Louvain clearly improves on the
results of the baseline1. Contrary to the results on the bench-
mark data sets, however, spectral partitioning outperforms
Louvain, even though the two are close for node-community
matching. The table also shows a very surprising result in
that spectral partitioning with node-community matching
does best when not creating communities at all! In that case
it is the matching technique that does the heavy lifting and
effectively treats each entity as a community of size 1 when
the time comes to predict new links.

To evaluate whether this is a phenomenon that is specific
to IUPHAR or occurs more generally, we compare the results
form = 0 on the benchmark data to the ones achieved by
parameter-optimized spectral partitioning in Table 5. As the
table shows, optimizing parameters does provide a perfor-
mance gain, sometimes strongly so, as in the case of NR.
Yet at the same time, the results form = 0 are acceptable.
This indicates both that those benchmark data sets are not
fully representative of the problem setting, and that for large

1Baseline results taken from [3], where AUPR was not reported.
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Table 4: Performance ceiling on IUPHAR (* – for 1 fold in average; ** – Spectral partitioning without thresholding
optimization)

Approach Measure Optimal Performance Running
parameters AUC σ AUPR σ time*, s

Baseline - eta=0.2, beta=0.7 0.57 - - - 11.9x8137
Spectral partitioning JCCC m=400, default** 0.74 0.02 0.01 0.00 3477.82

JCNC m=0, w/o threshold 0.85 0.00 0.01 0.00 2484.91
Louvain algorithm JCCC resolution=0.1 0.61 0.01 0.10 0.01 5263.97

JCNC resolution=0.8 0.82 0.01 0.02 0.00 2702.62

Table 5: Link prediction without community detection vs spectral partitioning with optimal parameters and NC
matching

Data set Without communities (m=0) Optimal m and threshold
AUC σ AUPR σ AUC σ AUPR σ

Enzyme 0.88 0.01 0.11 0.01 0.92 0.01 0.29 0.05
GPCR 0.78 0.02 0.18 0.02 0.85 0.02 0.27 0.04
IC 0.85 0.01 0.25 0.02 0.89 0.02 0.43 0.06
NR 0.68 0.08 0.16 0.05 0.78 0.05 0.25 0.09

Kinase 0.85 0.01 0.32 0.03 0.86 0.01 0.36 0.03

data one could do some quick-shot prediction usingm = 0
and node-community matching before going to the effort of
optimizing parameters.

1.2 Verification of predicted drug-target
interactions

In this experiment, we verify our approach with different
settings by predicting new interactions and providing a con-
fidence value for the prediction results. We compare again
with the baseline method from [3]. We perform verification
on the IUPHAR data. We use the full data, i.e. without split-
ting into train and test sets and predict edges that are not
present in IUPHAR at all. We reuse the optimal found in
the preceding section (an approach similar to an internal
validation).

We search for occurrences of predicted results in exter-
nal resources, introduce a confidence score, and, finally, give
feedback. As an external resource we use the Unified Medical
Language System (UMLS) [1], which is composed of three
knowledge sources: the Metathesaurus, the Semantic Net-
work, and the SPECIALIST Lexicon. We define verification
as a multi-step process: 1) Map drugs and targets from pre-
dicted interactions with the Metathesaurus vocabulary. For
that, we convert the IUPHAR drug/target id into the IUPHAR
drug/target provisional name; 2) Retrieve semantic types for
all predicted drugs and targets. For this step, we use the
MetaMap tool [2]; 3) Match each predicted drug-target pair
with retrieved semantic type relations using the Semantic

Network; 4) For each matched relation compute a confidence
score defined as:

score(d, t) =

∑N
i, j

conf (di )
1000 ·

conf (tj )
1000

N
× N ,

where conf (di ), conf (tj ) denote confidence scores of a drug
concept i and a target concept j respectively, and N is a num-
ber of matched semantic type relations. Finally, 5) Generate
feedback for each predicted drug-target pair (see Table 7 for
examples), and compute a summary for all predictions. Note
that steps 1-2 can be precomputed for all drugs and targets
in a data set.
We used Precision@20 to predict new interactions, and

performed that for each drug in the set. As an evaluation
criterion, we report the percentage of verified predictions
in total, as well as those with the maximum score 1.0. The
results are presented in Table 6. They are very similar to
the results derived from using known labels in the test data
for validation (Table 4), slightly better in some case since
Precision@20 is likely to leave out low-quality predictions. It
is therefore possible to use an external data source to verify
made predictions. Spectral partitioning with m=0 and CN
matching setting provides the best results, while Louvain
with resolution=0.1 and CC matching setting does worst.
Notably, the randomwalk baseline doesworse for predictions
on the test data than for those we evaluate using external
information.
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Table 6: Verification of found drug-target interactions on IUPHAR using external resources

Approach Measure Optimal parameters Predictions verified, %
in total with score 1.0

Baseline - eta=0.2, beta=0.7 77.58 45.33
Spectral partitioning JCCC m=400, default threshold 78.65 42.90

JCNC m=0, w/o threshold 83.23 47.65
Louvain algorithm JCCC resolution=0.1 70.19 53.08

JCNC resolution=0.8 82.41 44.06

Table 7: Example of verified (top) and non-verified (bottom) predictions using the UMLS as an external resource
(* – not normalized)

Property Value Confidence
IUPHAR drug id l1008
Drug provisional name sarafotoxin S6c
Drug semantic types [Amino Acid, Peptide, or Protein] 1000*

IUPHAR target id t2206
Target provisional name phosphatase and tensin homolog
Target semantic types [Amino Acid, Peptide, or Protein] 1000*

[Enzyme] 1000*
[Molecular Function] 1000*
[Qualitative Concept] 1000*
[Amino Acid, Peptide, or Protein] 694*
[Biologically Active Substance] 694*
[Gene or Genome] 861*
[Gene or Genome] 694*
[Gene or Genome] 861*

Semantic type relations [Amino Acid, Peptide, or Protein] interacts_with [Amino Acid, Peptide, or Protein] 0.694
[Amino Acid, Peptide, or Protein] interacts_with [Amino Acid, Peptide, or Protein] 1.0
[Amino Acid, Peptide, or Protein] interacts_with [Enzyme] 1.0
[Amino Acid, Peptide, or Protein] affects [Molecular Function] 1.0
[Amino Acid, Peptide, or Protein] interacts_with [Biologically Active Substance] 0.694

Confidence score 0.8776 x 5
IUPHAR drug id l1008
Drug provisional name sarafotoxin S6c
Drug semantic types [Amino Acid, Peptide, or Protein] 1000*

IUPHAR target id t1495
Target provisional name phosphoinositide-3-kinase regulatory subunit 1
Target semantic types [Gene or Genome] 1000*

Semantic type relations -

Confidence score 0.0 x 0
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Table 8: Relation between network sizes and running times for IUPHAR and benchmark data sets

Quotient IUPHAR/benchmark set for
Data set |V |2 |E | Running times
Enzyme 92.03 82.98 59.27
GPCR 1119.3 894.61 871,62
IC 660.39 605.22 492.60
NR 17685.67 14467.41 23185.33

Kinase 435.17 263.73 349.88

1.3 Scalability
In order to verify scalability of our approach we tested it on
the bigger data set, IUPHAR, and compared to running times
on the benchmark data. Running times for a single test fold,
the majority of which is taken up by community matching,
are shown in Table 1 in the main paper. We show results for
complete test folds since optimizing the parameter values via
internal cross-validation will require five times this running
time before the derived model can be applied to unseen data.

W.r.t. the number of vertices squared, i.e. the dimensional-
ity of the matrices, dividing the value for IUPHAR by those
of the benchmark data results in lower values than dividing
running times, as Tabel 8 shows. The exception to this is
NR, which is so small that it can be treated in less than a
quarter second. Running times also grow more slowly than
edge count, with the exception of Kinase, which might have
to do with the fact that that data set is rather unbalanced,
with far fewer drugs than targets. These results imply that
the method scales, at least when using spectral partitioning.

In addition, Table 4 shows running times for the different
combinations of community detection algorithm and match-
ing method. Spectral partitioning is somewhat faster than
Louvain but for node-community matching, this difference
shrinks. Notably, even though node-community matching
in itself is more expensive, the nature of this matching tech-
nique needs fewer communities, making up in terms of the
community detection step itself.
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